It is commonly believed that the observed overabundances of many chemical
species relative to the expected cluster metallicity in blue horizontal branch
(BHB) stars appear as a result of atomic diffusion in the photosphere. The slow
rotation of BHB stars (with T_eff > 11,500K), typically v sin{i} < 10 km/s, is
consistent with this idea. In this work we search for observational evidence of
vertical chemical stratification in the atmosphere of HD135485. If this
evidence exists, it will demonstrate the importance of atomic diffusion
processes in the atmospheres of BHB stars. We undertake an extensive abundance
stratification analysis of the atmosphere of HD135485, based on recently
acquired high resolution and S/N CFHT ESPaDOnS spectra and a McDonald-CE
spectrum. Our numerical simulations show that nitrogen and sulfur reveal
signatures of vertical abundance stratification in the stellar atmosphere. It
appears that the abundances of these elements increase toward the upper
atmosphere. This fact cannot be explained by the influence of microturbulent
velocity, because oxygen, carbon, neon, argon, titanium and chromium do not
show similar behavior and their abundances remain constant throughout the
atmosphere. It seems that the iron abundance may increase marginally toward the
lower atmosphere. This is the first demonstration of vertical abundance
stratification of metals in a BHB star.Comment: 8 pages, 5 figures, accepted to A&