242 research outputs found

    Coherent photonuclear reactions for isotope transmutation

    Full text link
    Coherent photonuclear isotope transmutation (CPIT) produces exclusively radioactive isotopes (RIs) by coherent photonuclear reactions via E1 giant resonances. Photons to be used are medium energy photons produced by laser photons backscattered off GeV electrons. The cross sections are as large as 0.2 - 0.6 b, being independent of individual nuclides. A large fraction of photons is effectively used for the photonuclear reactions, while the scattered GeV electrons remain in the storage ring to be re-used. CPIT with medium energy photons provides specific/desired RIs with the high rate and the high density for nuclear science, molecular biology and for nuclear medicines.Comment: 8 pages, 2 figure

    Lock-in detection using a cryogenic low noise looped current preamplifier for the readout of resistive bolometers

    Full text link
    We implemented a low noise current preamplifier for the readout of resistive bolometers. We tested the apparatus on thermometer resistances ranging from 10 Ohm to 500 Mohm. The use of current preamplifier overcomes constraints introduced by the readout time constant due to the thermometer resistance and the input capacitance. Using cold JFETs, this preamplifier board is shown to have very low noise: the Johnson noise of the source resistor (1 fA/Hz1/2) dominated in our noise measurements. We also implemented a lock-in chain using this preamplifier. Because of fast risetime, compensation of the phase shift may be unnecessary. If implemented, no tuning is necessary when the sensor impedance changes. Transients are very short, and thus low-passing or sampling of the signal is simplified. In case of spurious noise, the modulation frequency can be chosen in a much wider frequency range, without requiring a new calibration of the apparatus.Comment: 18 pages, 7 figures, Accepted in NIM

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis

    The role of ν\nu-induced reactions on lead and iron in neutrino detectors

    Get PDF
    We have calculated cross sections and branching ratios for neutrino induced reactions on ^{208}Pb and ^{56}Fe for various supernova and accelerator-relevant neutrino spectra. This was motivated by the facts that lead and iron will be used on one hand as target materials in future neutrino detectors, on the other hand have been and are still used as shielding materials in accelerator-based experiments. In particular we study the inclusive ^{56}Fe(νe,e)Fe(\nu_e,e^-)^{56}Co and ^{208}Pb(νe,e)Pb(\nu_e,e^-)^{208}Bi cross sections and calculate the neutron energy spectra following the decay of the daughter nuclei. These reactions give a potential background signal in the KARMEN and LSND experiment and are discussed as a detection scheme for supernova neutrinos in the proposed OMNIS and LAND detectors. We also study the neutron-emission following the neutrino-induced neutral-current excitation of ^{56}Fe and ^{208}Pb.Comment: 23 pages (including 7 figures

    CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Full text link
    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.Comment: 67 pages, 50 figures. Th. Lasserre thanks the European Research Council for support under the Starting Grant StG-30718

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Mapping Potential Timing of Ice Algal Blooms From Satellite

    Get PDF
    As Arctic sea ice and its overlying snow cover thin, more light penetrates into the ice and upper ocean, shifting the phenology of algal growth within the bottom of sea ice, with cascading impacts on higher trophic levels of the Arctic marine ecosystem. While field data or autonomous observatories provide direct measurements of the coupled sea ice‐algal system, they are limited in space and time. Satellite observations of key sea ice variables that control the amount of light penetrating through sea ice offer the possibility to map the under‐ice light field across the entire Arctic basin. This study provides the first satellite‐based estimates of potential sea ice‐associated algal bloom onset dates since the launch of CryoSat‐2 and explores how a changing snowpack may have shifted bloom onset timings over the last four decades
    corecore