414 research outputs found

    Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints

    Get PDF
    Soils of temperate forests store significant amounts of organic matter and are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon (SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the incubation of soil and roots have been widely used together with Δ<sup>14</sup>C of total soil respiration to partition soil respiration into heterotrophic respiration (HR) and rhizosphere respiration. However, these data have not been used as joint observational constraints to determine SOC turnover times. Thus, we focus on (1) how different combinations of observational constraints help to narrow estimates of turnover times and other parameters of a simple two-pool model, the Introductory Carbon Balance Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple constraints approach allows the source/sink strength of the soil to be determined while estimating turnover times at the same time. To this end ICBM was adapted to model SOC and SO<sup>14</sup>C in parallel with litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and Howland Tower site) were used to estimate the parameters of ICBM via Bayesian calibration. Key findings are as follows: (1) the joint use of all four observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational constraints made it possible to constrain the humification factor in ICBM, which describes the fraction of the annual outflux from the young pool that enters the old pool. The Bayesian parameter estimation yielded the following turnover times (mean ± standard deviation) for SOC in the young pool: Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were 377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0) and 184 ± 42 years (Howland Tower), respectively. (2) At all three sites the multiple constraints approach was not able to determine if the soil has been losing or storing carbon. Nevertheless, the relaxed steady-state assumption hardly introduced any additional uncertainty for the other parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C data from more than one carbon pool or flux helps to better constrain SOC models

    Reviewing the Carbonation Resistance of Concrete

    Get PDF
    The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2) penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs)/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefl

    How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe?

    Get PDF
    Global warming is accompanied by increasing water stress across much of our planet. We studied soil biological processes and changes in soil organic carbon (SOC) storage in 30 Hungarian oak forest sites in the Carpathian Basin along a climatic gradient (mean annual temperature (MAT) 9.6\u201312.1 C, mean annual precipitation (MAP) 545\u2013725 mm) but on similar gently sloped hillsides where the parent materials are loess and weathered dust inputs dating from the end of the ice age. The purpose of this research was to understand how a drying climate, predicted for this region, might regulate long-term SOC sequestration. To examine the effects of decreasing water availability, we compared soil parameters and processes in three categories of forest that represented the moisture extremes along our gradient and that were defined using a broken-stick regression model. Soil biological activity was significantly lower in the driest (\u2018\u2018dry\u2019\u2019) forests, which had more than double the SOC concentration in the upper 30 cm layer (3.28 g C/100 g soil \ub1 0.11 SE) compared to soils of the wettest (\u2018\u2018humid\u2019\u2019) forests (1.32 g C/100 g soil \ub1 0.09 SE), despite the fact that annual surface litter production in humid forests was * 37% higher than in dry forests. A two-pool SOM model constrained to fit radiocarbon data indicates that turnover times for fast and slow pools are about half as long in the humid soil compared to the dry soil, and humid soils transfer C twice as efficiently from fast to slow pools. Enzyme activity and fungal biomass data also imply shorter turnover times associated with faster degradation processes in the soils of humid forests. Thermogravimetry studies suggest that more chemically recalcitrant compounds are accumulating in the soils of dry forests. Taken together, our results suggest that the predicted climate drying in this region might increase SOC storage in Central European mesic deciduous forests even as litter production decreases

    Thank You to Our 2021 Peer Reviewers

    Get PDF
    The editorial board of AGU Advances thanks the individuals who reviewed for the journal in 2021. © 2022. The Authors. AGU Advances published by Wiley Periodicals LLC on behalf of American Geophysical Union
    corecore