82 research outputs found

    Технология сборки и сварки хребтовой балки рамы железнодорожной платформы

    Get PDF
    При производстве деталей вагонов поездов особое значение отдается технологии сборки и сварки, от которой будет зависеть качество и работоспособность конструкции. Одной из наиболее нагруженных деталей вагона является хребтовая балка. Хребтовая балка служит для крепления на ней автосцепного и тормозного оборудования. Предметом изучения является технология автоматической сварки под слоем флюса плавящимся электродом. Объектом изучения в выпускной квалификационной работе является технология изготовления хребтовой балки. Цель работы – является разработка технологического процесса сборки и автоматической сварки под слоем флюса вагонной хребтовой.In the production of train car parts, special emphasis is given to assembly and welding technology, on which the quality and performance of the structure will depend. One of the most loaded parts of the car is a spinal beam. Spinal beam serves to attach the auto-coupling and brake equipment on it. The subject of study is the technology of automatic welding under a layer of flux by a consumable electrode. The object of study in the final qualifying work is the technology of making a spinal beam. The purpose of the work is the development of the technological process of assembly and automatic welding under a layer of flux wagon spinal

    Анализ термодинамических параметров нефтепровода с предварительным подогревом нефти в условиях Севера

    Get PDF
    Объектом исследования является трубопровод, на котором применяется технология перекачки нефти с предварительным подогревом. Цель работы – определить влияние термодинамических характеристик трубопроводного транспорта нефти в условиях Севера на эффективность технологии перекачки нефти с предварительным подогревом. В процессе исследования проводились гидравлические и тепловые расчеты, расчет оптимальной температуры транспорта, расчет экономической эффективности использования технологии транспорта с подогревом. Рассмотрены вопросы корректного описания вязкостно-температурной характеристики нефти для определения оптимальной температуры подогрева нефти, влияния термодинамических параметров системы «нефтепровод-окружающая среда» на эффективность применения предварительного подогрева.The object of research is the hot oil pipeline. Purpose - to determine the influence of the thermodynamic characteristics of the pipeline transport of oil in the North on the effectiveness of technology of hot oil transfer. The study carried out hydraulic and thermal calculations, the calculation of optimal transport temperature, calculation of economic efficiency of use of hot oil transport. The questions of the correct description of viscosity-temperature characteristics of the oil to determine the optimum temperature of heating oil, the effect of thermodynamic parameters of the system "pipeline-environment" on the effectiveness of transport. Presents measures for health and safety point of operation of oil heating, environmental protection, technical and economic part

    Adaptive Equalization and Capacity Analysis for Amplify-and-Forward Relays

    Get PDF
    Recent research has shown that multiple-input multiple-output (MIMO) systems provide high spectral efficiencies and error performance gains. However, the use of multiple antennas in mobile terminals may not be very practical. Certainly there is limited space and other implementation issues which make this a challenging problem. Therefore, to harness the diversity gains afforded by MIMO transmitter diversity techniques, while maintaining a minimal number of antennas on each handset, cooperative diversity techniques have been proposed. In addition, attention has also been given to combining wireless relaying systems with MIMO techniques to improve capacity, coverage, and obtain better diversity at the expense of increased node complexity. This thesis considers the design and analysis of cooperative diversity systems and MIMO amplify-and-forward relaying systems. In particular, we investigate adaptive time- and frequency-domain equalization techniques for cooperative diversity systems using space-time block codes (STBC). For MIMO relaying systems, we analyze the ergodic capacity of various systems and compare different amplify-and-forward methods in terms of system capacity performance. We propose a new block time-domain adaptive equalization structure for time reversal-space time block coding (TR-STBC) systems, which eliminates the separate decoder and also the need for explicit channel state information (CSI) estimation at the receiver. Our simulation results show that the time-domain adaptive block equalizer performs better than the frequency-domain counterpart but at the cost of increased complexity. Then, we extend this time-domain adaptive equalization scheme to distributed TR-STBC systems. We also develop a frequency-domain counterpart for the distributed systems. Our simulation results show that the adaptive algorithms work well for Protocols I and III proposed by Nabar et al. The time-domain adaptive algorithms perform better than the frequency-domain algorithms, and overall the Protocol I receivers outperform the Protocol III receivers. We also show that, if only the Protocol III receiver is used, it can be susceptible to noise amplification due to a weaker source-to-relay link compared to the relay-to-destination link. This problem can be mitigated by using the Protocol I receivers with some extra complexity but much superior diversity performance. We also present an ergodic capacity analysis of an amplify-and-forward (AF) MIMO two-hop system including the direct link and validate the analysis with simulations. We show that having the direct link improves the capacity due to diversity and quantify this improvement. We also present an ergodic capacity analysis of an AF MIMO two-hop, two relay system. Our results verify the capacity gain of relaying systems with two relays due to the extra diversity compared to a single relaying system. However, the results also show that when one of the source-to-relay links has a markedly higher SNR compared to the other, a single relay system has better capacity than a two relay system. Finally, we compare three types of relay amplification methods: a) average amplification, b) instantaneous channel amplification, and c) instantaneous power amplification. The instantaneous power amplification method has a higher mean capacity but with a higher variance. Also, it requires additional information at the destination and would create enormous overheads compared to the other methods. We also find that the instantaneous channel amplification method has almost no advantage in terms of the mean capacity but its capacity is less variable than the average amplification method. On the other hand, the average amplification method is simpler to implement as it does not require channel estimation at the relaying terminal

    results of the prospective observational Berlin Beat of Running study

    Get PDF
    Objectives: While regular physical exercise has many health benefits, strenuous physical exercise may have a negative impact on cardiac function. The ‘Berlin Beat of Running’ study focused on feasibility and diagnostic value of continuous ECG monitoring in recreational endurance athletes during a marathon race. We hypothesised that cardiac arrhythmias and especially atrial fibrillation are frequently found in a cohort of recreational endurance athletes. The main secondary hypothesis was that pathological laboratory findings in these athletes are (in part) associated with cardiac arrhythmias. Design: Prospective observational cohort study including healthy volunteers. Setting and participants: One hundred and nine experienced marathon runners wore a portable ECG recorder during a marathon race in Berlin, Germany. Athletes underwent blood tests 2–3 days prior, directly after and 1–2 days after the race. Results: Overall, 108 athletes (median 48 years (IQR 45–53), 24% women) completed the marathon in 249±43 min. Blinded ECG analysis revealed abnormal findings during the marathon in 18 (16.8%) athletes. Ten (9.3%) athletes had at least one episode of non-sustained ventricular tachycardia, one of whom had atrial fibrillation; eight (7.5%) individuals showed transient ST-T-segment deviations. Abnormal ECG findings were associated with advanced age (OR 1.11 per year, 95% CI 1.01 to 1.23), while sex and cardiovascular risk profile had no impact. Directly after the race, high-sensitive troponin T was elevated in 18 (16.7%) athletes and associated with ST-T-segment deviation (OR 9.9, 95% CI 1.9 to 51.5), while age, sex and cardiovascular risk profile had no impact. Conclusions: ECG monitoring during a marathon is feasible. Abnormal ECG findings were present in every sixth athlete. Exercise-induced transient ST-T-segment deviations were associated with elevated high-sensitive troponin T (hsTnT) values. Trial registration: ClinicalTrials.gov NCT01428778; Results

    Global gene flow releases invasive plants from environmental constraints on genetic diversity

    Get PDF
    When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area

    Transcranial magnetic stimulation, synaptic plasticity and network oscillations

    Get PDF
    Transcranial magnetic stimulation (TMS) has quickly progressed from a technical curiosity to a bona-fide tool for neurological research. The impetus has been due to the promising results obtained when using TMS to uncover neural processes in normal human subjects, as well as in the treatment of intractable neurological conditions, such as stroke, chronic depression and epilepsy. The basic principle of TMS is that most neuronal axons that fall within the volume of magnetic stimulation become electrically excited, trigger action potentials and release neurotransmitter into the postsynaptic neurons. What happens afterwards remains elusive, especially in the case of repeated stimulation. Here we discuss the likelihood that certain TMS protocols produce long-term changes in cortical synapses akin to long-term potentiation and long-term depression of synaptic transmission. Beyond the synaptic effects, TMS might have consequences on other neuronal processes, such as genetic and protein regulation, and circuit-level patterns, such as network oscillations. Furthermore, TMS might have non-neuronal effects, such as changes in blood flow, which are still poorly understood

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness
    corecore