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Abstract

Recent research has shown that multiple-input multiple-output (MIMO) systems

provide high spectral efficiencies and error performance gains. However, the use of

multiple antennas in mobile terminals may not be very practical. Certainly there

is limited space and other implementation issues which make this a challenging

problem. Therefore, to harness the diversity gains afforded by MIMO transmitter

diversity techniques, while maintaining a minimal number of antennas on each hand-

set, cooperative diversity techniques have been proposed. In addition, attention has

also been given to combining wireless relaying systems with MIMO techniques to

improve capacity, coverage, and obtain better diversity at the expense of increased

node complexity.

This thesis considers the design and analysis of cooperative diversity systems and

MIMO amplify-and-forward relaying systems. In particular, we investigate adaptive

time- and frequency-domain equalization techniques for cooperative diversity sys-

tems using space-time block codes (STBC). For MIMO relaying systems, we analyze

the ergodic capacity of various systems and compare different amplify-and-forward

methods in terms of system capacity performance.

We propose a new block time-domain adaptive equalization structure for time

reversal-space time block coding (TR-STBC) systems, which eliminates the separate

decoder and also the need for explicit channel state information (CSI) estimation

at the receiver. Our simulation results show that the time-domain adaptive block

equalizer performs better than the frequency-domain counterpart but at the cost

of increased complexity. Then, we extend this time-domain adaptive equalization

scheme to distributed TR-STBC systems. We also develop a frequency-domain
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counterpart for the distributed systems. Our simulation results show that the adap-

tive algorithms work well for Protocols I and III proposed by Nabar et al. The

time-domain adaptive algorithms perform better than the frequency-domain algo-

rithms, and overall the Protocol I receivers outperform the Protocol III receivers.

We also show that, if only the Protocol III receiver is used, it can be susceptible to

noise amplification due to a weaker source-to-relay link compared to the relay-to-

destination link. This problem can be mitigated by using the Protocol I receivers

with some extra complexity but much superior diversity performance.

We also present an ergodic capacity analysis of an amplify-and-forward (AF)

MIMO two-hop system including the direct link and validate the analysis with sim-

ulations. We show that having the direct link improves the capacity due to diversity

and quantify this improvement. We also present an ergodic capacity analysis of an

AF MIMO two-hop, two relay system. Our results verify the capacity gain of relay-

ing systems with two relays due to the extra diversity compared to a single relaying

system. However, the results also show that when one of the source-to-relay links

has a markedly higher SNR compared to the other, a single relay system has better

capacity than a two relay system.

Finally, we compare three types of relay amplification methods: a) average ampli-

fication, b) instantaneous channel amplification, and c) instantaneous power ampli-

fication. The instantaneous power amplification method has a higher mean capacity

but with a higher variance. Also, it requires additional information at the destina-

tion and would create enormous overheads compared to the other methods. We also

find that the instantaneous channel amplification method has almost no advantage

in terms of the mean capacity but its capacity is less variable than the average am-

plification method. On the other hand, the average amplification method is simpler

to implement as it does not require channel estimation at the relaying terminal.
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Chapter 1

Introduction

This thesis considers the design and analysis of cooperative diversity systems and

multiple-input multiple-output relaying systems. Cooperative diversity systems are

designed which include space-time block codes with adaptive equalization in ei-

ther the time or the frequency domains. In multiple-input multiple-output relaying

systems, the capacity of the various systems are analyzed and also different amplify-

and-forward methods are explored.

In the last decade, we have seen a vast growth in wireless technologies like cel-

lular telephony, personal/portable devices and mobile internet. With this growth

has come a mandate for reliable higher-speed data transmission over wireless chan-

nels. Unfortunately, reliable wireless transmission is difficult due to the limited radio

spectrum and the time-varying multipath fading of the wireless channel. In mul-

tipath fading the received signal is made up of components traveling over multiple

propagation paths of differing length, often with no line-of-sight component, hence

introducing inter-symbol interference (ISI). In addition, the signal components do

not arrive at the receiver in phase with one another so the strength of the received

signal varies with time, and as a result the signal fades. Hence, one of the main

tasks of wireless communication system designers is to explore new techniques in

order to achieve high spectral efficiencies and error performance gains.

The error performance of single antenna systems can be increased using coding

techniques, such as low density parity check [2, 3] and turbo codes [4]. Furthermore,

1



Chapter 1. Introduction 2

considerable gains in spectral efficiency and error performance are attainable by

increasing the number of antennas at both the transmitter and the receiver [5, 6].

This type of multiple antenna system is usually called a multiple-input multiple-

output (MIMO) system. MIMO systems can operate either as spatial diversity

systems and/or spatial multiplexing systems.

Spatial diversity systems, using multiple antennas at the transmitter and/or

receiver, have been proven to be effective at mitigating multipath fading effects,

and hence, provide better system error performance. The basic aim of diversity

techniques is to provide multiple replicas of the transmitted signals at the receiver,

all carrying the same information but with small correlation in the fading statistics

[7]. A classical approach to achieving spatial diversity is to use multiple antennas

at the receiver. More recently, transmitter diversity techniques using space-time

codes (STC), which use multiple transmit antennas, have been proposed [8, 6]. The

two most well-known STC are Space-Time Trellis Codes (STTC) [9], and Space-

Time Block Codes (STBC) [10]. The implementation of STTC can become very

complicated as the number of antennas increases. However, STBC are relatively

simple to implement.

In contrast to diversity systems, the aim of spatial multiplexing systems is to

improve the spectral efficiency or throughput of the system [5, 11, 12, 13]. A multi-

plexing system divides the incoming data into sub-streams and transmits them on

different antennas. As a result, the overall throughput of the system improves as

multiple data streams are sent simultaneously.

MIMO systems can provide reliable higher-speed data transmission over wireless

channels using these spatial diversity and multiplexing techniques. However, these

systems also have challenges and constraints. It is usually not very practical to have

multiple antennas at mobile terminals. This is due to terminal constraints such as

size, cost and power. Small antennas for MIMO mobile terminals, such as planar

inverted-F antennas, have recently been proposed [14, 15, 16]. Furthermore, cross

polarized antennas for MIMO systems are now receiving considerable attention,

because they are able to double the antenna number within half the spacing need
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of co-polarized antennas [17]. Using these new antenna design technologies, it may

be possible to overcome the size issue. However, research into these technologies

is still in progress. In addition to these constraints on MIMO systems, wireless

communication systems also need to increase the communication range. To extend

the range and decrease the mobile terminal requirements, wireless relaying networks

have recently been given considerable attention.

1.1 Wireless Relaying Systems

Relaying systems have been studied since the 1970s [18, 19]. The main objectives

of relaying systems are to increase coverage and reduce the need to use high power

at the transmitter or source terminal. Basically, in relaying systems the source

terminal uses other terminals or relays to forward its information to the destina-

tion terminal. In general, there are two types of relaying systems, non-regenerative

and regenerative systems [20], depending on the nature and the complexity of the

relays used. In regenerative systems, also called decode-and-forward (DF) relaying

systems, the relay fully decodes the received signal and retransmits the decoded sym-

bol to the destination. Non-regenerative systems, also called amplify-and-forward

(AF) systems, on the other hand use less complex relays that do not perform any

sort of decoding, but simply amplify the received signal and forward it to the desti-

nation. Recently, with a better understanding of the advantages of MIMO systems,

researchers have proposed alternative techniques that could achieve the advantages

of both MIMO and/or wireless relaying systems.

Although MIMO systems provide high spectral efficiencies and error performance

gains, having multiple antennas at mobile terminals may not be very practical.

However, to harness the diversity gains afforded by the MIMO transmitter diver-

sity techniques, while maintaining a minimal number of antennas on each handset,

cooperative diversity techniques have recently been proposed [21, 1, 22]. These tech-

niques allow a source terminal to leverage the spatial diversity offered by other

terminals’ antennas to form a virtual multiple-antenna array.
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Cooperative diversity systems utilize the spatial diversity gains of MIMO sys-

tems by using single antenna based relaying systems. Recently, attention has been

given to combining wireless relaying systems with MIMO techniques [23, 24]. In

this hybrid technique, each terminal, source, relay(s) and destination has multiple

antennas as in MIMO systems, and the relay(s) helps to forward the source terminal

information to the destination. Using this approach, the system gets better capacity,

coverage, and better diversity at the expense of increased node complexity.

1.2 Thesis Contributions

Transmit diversity techniques have proven to be effective at mitigating multipath

fading. In [10], Alamouti proposed a transmit diversity scheme for flat fading chan-

nels that achieves the same diversity benefits as can be achieved by receive diver-

sity, while requiring only linear decoding complexity. In [25], Lindskog and Paulraj

extended Alamouti’s method to frequency selective fading channels. Their time

reversal-space time block coding (TR-STBC) scheme combines time-domain filter-

ing, conjugation and time reversal operations. The outputs of the TR-STBC decoder

are decoupled but contain residual inter-symbol interference (ISI) which must be

mitigated using equalizers. Unfortunately, to perform this equalization, the optimal

maximum likelihood sequence estimation techniques have exponentially increasing

complexity with the signal constellation size and channel impulse response length.

Several block STBC structures for frequency selective fading channels, includ-

ing single carrier-frequency domain equalizers (SC-FDE) [26] and orthogonal fre-

quency division multiplexing (OFDM) transcievers [27], have been proposed. In

these schemes, the decoding and equalization of the STBC transmissions require

explicit estimation of the channel impulse response (CIR) at the receiver.

However, an improved approach is a combined decoder/adaptive equalizer struc-

ture that does not require separate CIR estimation, thereby reducing the system

overhead and at the same time providing a tracking mechanism for time-varying

channels. In [28], such a decoding/adaptive equalization scheme has been proposed
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for SC FDE-STBC systems. One advantage of this particular scheme is that it deliv-

ers recursive least-squares (RLS) performance using least-mean-square (LMS) order

complexity. However, as the scheme is based on frequency domain block equaliza-

tion, the equalizer is constrained to have the same length as the data block length.

This means that the complexity of the equalizer grows as the block length increases,

even when the CIR is very short. Therefore, the scheme is advantageous primarily

for channels with very long delay spreads.

Exploiting the efficiency of processing the received data in the time-domain, the

first part of this thesis presents an adaptive block decoding/equalization scheme for

TR-STBC systems with a decoder/equalizer length that is independent of the block

length, making it suitable for channels with short CIRs.

In cellular systems, transmitter diversity techniques have generally been consid-

ered only for the downlink to minimize the number of power-hungry and expensive

antennas in the mobile handset. However, to harness the diversity gains afforded by

these transmitter techniques in the uplink as well, while maintaining a minimal num-

ber of antennas on each handset, cooperative diversity techniques have recently been

proposed. Most researchers working on cooperative diversity assume a flat fading

channel. However, Mheidat et al. [29, 22] have studied the performance of equaliza-

tion techniques for distributed STBC systems in frequency selective fading channels.

Their decoding and equalization techniques for the distributed STBC transmissions

require explicit estimation of the CIR at the receiver. Using the results given in the

first part of the thesis, we also develop both time- and frequency-domain adaptive

combined decoding/equalization schemes for relay-assisted TR-STBC transmission

systems. This method does not require explicit estimation of the CIR at the receiver.

As mentioned before, using relays can have a number of advantages. In addi-

tion to increasing the range, cooperative transmission can also provide increases in

diversity. Furthermore, extending MIMO techniques to relaying systems [30] can in-

crease the capacity of the relaying system compared to single antenna based relaying

systems by providing additional diversity gains. Hence, it is important to analyze

MIMO relaying systems to study the effects of various system parameters on the
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performance of these systems. Many papers have been written on MIMO system

analysis [31, 32, 33, 34, 35]. However, relatively few consider the analysis of MIMO

relaying systems. Therefore, in this area we analyze the capacity of various MIMO

relaying systems using an eigenvalue based analysis and compare and explain the

performance of different AF methods in wireless relaying systems.

To summarize, the main contributions of the thesis are:

1. Adaptive equalization for STBC systems:

A time domain adaptive block equalizer for TR-STBC systems is proposed and

its performance is compared with a frequency domain counterpart.

2. Adaptive equalization for STBC based cooperative diversity systems:

Time and frequency domain adaptive block equalizers for TR-STBC based co-

operative diversity systems are given. Adaptive equalizers are developed and

compared for two different relaying protocols.

3. Capacity analysis of MIMO two-hop relaying systems:

Capacity analysis is performed for a MIMO two-hop one-relay relaying system

with a source to destination link and also for a MIMO two-hop two-relay re-

laying system. Expressions for the probability density functions of an arbitrary

eigenvalue of the systems are first derived. Then closed-form expressions for the

ergodic capacity of the systems are derived.

4. Amplify-and-Forward amplification methods for relaying systems:

Three different amplification methods for MIMO two-hop relaying systems are

compared in terms of their capacity using simulation. Then the capacity behavior

of these systems is explained using the cumulative distribution functions of the

signal-to-noise ratios of the systems.

1.3 Thesis Outline

The rest of this thesis is organized as follows:
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In Chapter 2 we introduce the required background information for the thesis.

First, we describe the wireless channel and the fading environment, including the

models used in the thesis, followed by an outline of space-time block codes and

adaptive block equalization. Finally, wireless relaying systems and MIMO relay

capacity analysis are explained.

In Chapter 3 we present a time-domain block equalizer for TR-STBC transceivers,

which eliminates the need for a separate decoding block requiring explicit channel

estimation. We first describe the TR-STBC encoding and decoding used in the

system followed by the Minimum Mean Square Error (MMSE) equalizer derivation.

Then, from the MMSE equalizer, we derive the adaptive receiver scheme. Finally,

the performance of the time-domain RLS based adaptive receiver is presented using

simulation and compared with the frequency domain adaptive receiver given in [28].

In Chapter 4 we develop both time- and frequency-domain adaptive combined de-

coding/equalization schemes for relay-assisted TR-STBC transmission systems. We

derive both time- and frequency-domain adaptive combined decoding/equalization

schemes from MMSE solutions for an amplify-and-forward relay network based on

Protocols I and III proposed by Nabar et al. [1]. The chapter also includes an exten-

sive Monte Carlo simulation study and complexity analysis of both the time- and

frequency-domain adaptive combined decoding/equalization schemes.

In Chapter 5 we derive an exact expression for the capacity of an AF MIMO

two-hop system including a source to destination link. The expression derived in

this chapter can be used for arbitrary numbers of antennas at the source, relay and

destination. We also present simulation results to validate the analysis, and use the

results to quantify the capacity improvement due to the direct link. Further, we

also show that the ergodic capacity for a single relaying system without the direct

link can be derived from these results as a special case.

In Chapter 6 we derive an exact expression for the capacity of an AF MIMO

two-hop two relay system. We first develop an expression for the probability density

function of an arbitrary eigenvalue of the system. Then, using this result, we derive

a closed-form expression for the ergodic capacity of the system. We also present
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simulation results to validate the analysis. Further, we also show that the ergodic

capacity for a single relaying system without the direct link can be derived from

these results as a special case.

In Chapter 7 we compare three types of relay amplification methods in AF

MIMO relaying systems in terms of system capacity performance. Furthermore, we

also explain the capacity behavior using the cumulative distribution functions of the

signal-to-noise ratios of the amplification methods.

Finally, in Chapter 8 we present our conclusions for the thesis and future research

directions.

1.4 Publications

The majority of the material presented in this thesis is based on the following original

papers:

• A. Firag and L. M. Garth, “Joint time-domain decoding and equalization for time

reversal-space time block coded systems,” in Proc. IEEE Vehicular Technology

Conf., Baltimore, MD, USA, Sep. 2007. pp. 506-510.

• A. Firag and L. M. Garth, “Adaptive decoding and equalization for time reversal-

space time block-coded cooperative diversity systems,” in Proc. IEEE Int’l.

Conf. on Communications, Beijing, China, May 19-23, 2008. pp. 531-537.

• A. Firag and L. M. Garth, “Adaptive joint decoding and equalization for space-

time block-coded amplify-and-forward relaying systems,” accepted for publica-

tion in IEEE Trans. Signal Processing.

• A. Firag and P. J. Smith, “Capacity analysis for MIMO two-hop amplify-and-

forward relaying systems,” to appear in Int’l. Symposium on Information Theory

and its Applications (ISITA), Auckland, New Zealand, 2008.

• A. Firag, P. J. Smith, and M. R. McKay, “Capacity analysis for MIMO two-

hop amplify-and-forward relaying systems with the source to destination link,”
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submitted to IEEE Int’l. Conf. on Communications, 2009.
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Chapter 2

Background and Assumptions

In this chapter we present the required background information for the thesis. First,

the wireless channel and the fading environment, including the models used in the

thesis, are described. This is followed by background information used in Chapters

3 and 4 on space time block codes (STBC) and adaptive block equalization. Finally,

wireless relaying systems and MIMO relay capacity analysis are explained.

2.1 Wireless Channel

The characteristics of a wireless channel impose fundamental limitations on the per-

formance of wireless communication systems. The wireless channel can be studied

by decomposing it into two parts. Large-scale (long-term) impairments, including

path loss and shadowing, and a small-scale (short-term) impairments which are com-

monly referred to as fading. The large-scale impairments are used to predict the

average signal power at the receiver side and the transmission coverage area. Fad-

ing is due to the time-varying multipath propagation of the wireless channel. This

affects the instantaneous signal-to-noise ratio (SNR). Fading is the major problem

encountered in wireless transmission, hence, we focus more on it here.

In wireless signal propagation, the received signal is made up of different com-

ponents traveling over multiple propagation paths of differing lengths, often with

no line-of-sight component. In addition, the signal components do not arrive at the

11
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Figure 2.1: Multipath phenomenon in a wireless propagation environment.

receiver in phase with one another, so the strength of the received signal varies with

time, and as a result the signal fades. This phenomenon is called multipath fading

and is illustrated in Fig. 2.1.

In fading, two critical measures of the wireless channel characteristics are the

coherence bandwidth and coherence time. The coherence bandwidth is the frequency

range over which the fading process is correlated [7]. If the transmitted signal band-

width is smaller than the channel coherence bandwidth, then the fading is referred

to as frequency flat, otherwise it is frequency selective. In frequency selective fad-

ing, inter-symbol interference (ISI) occurs due to the arrival times of the multipath

components being significantly different (large delay spread). The coherence time

determines how quickly or slowly the channel is changing. Channels with large co-

herence times change slowly. This thesis includes both frequency flat and selective

fading environments. Chapters 3 and 4 deal with frequency selective fading environ-

ments whereas Chapters 5, 6 and 7 consider frequency flat scenarios. The channel

models used in the thesis are introduced in the following subsection.
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2.1.1 Fading SISO Channel

The techniques discussed in Chapters 3 and 4 use multiple-input single-output

(MISO) and relay based transmission schemes1. Examples of such schemes are

shown in Fig. 2.2. Each separate link in Fig. 2.2 can be modeled as a SISO channel.

Consider the link between the source and destination nodes in Fig. 2.2.(b). Let

the channel between the source and destination be frequency selective with channel

impulse response (CIR),

h = [h(0), h(1), . . . , h(V )]T , (2.1)

where V is the channel memory and [.]T represents the transpose. When V = 0,

the channel is frequency flat. In the transmission, it is assumed that the nodes use

block based transmission with zero-padding (ZP) [22], as shown in Fig. 2.3. ZP is

used to eliminate the inter-block interference by placing V zero symbols between

each data block. During each block interval, the source transmits N symbols,

x = [x(0), . . . , x(N − 1)]T . (2.2)

Then, using a tapped-delay-line channel model [36], the discrete baseband re-

ceived signal at the destination during the t-th symbol period of the k-th block can

be given as

y(k)(t) =
√

ESD

V∑

l=0

h(k,t)(l)x(k)(t− l) + n(k)(t). (2.3)

In (2.3), ESD is the average energy available at the destination, taking into account

the path loss and shadowing effects over the source to destination link, n(k)(t) is an

additive white complex Gaussian noise with zero-mean and variance σ2
D, and h(k,t)(l)

is the channel coefficient (fade coefficient) of the l-th path.

In the techniques discussed in Chapters 3 and 4, it is assumed that the channels

are slowly fading (quasi-static fading [9]) so that the channels remain constant for

a specified period of time. In this scenario, if the channel remains constant for a

1This subsection discusses fading single-input single-output (SISO) channels. These channels
are considered only in Chapters 3 and 4, and are not relevant to the other chapters of the thesis.
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block period, then h(k,t)(l) = h(k)(l). Now, stacking all of the observations of the

block, the received signal during the k-th block can be given as

y(k) =
[
y(k)(0), y(k)(1), . . . , y(k)(N + V − 1)

]T

=
√

ESR H(k) x(k) + n(k), (2.4)

where

n(k) =
[
n(k)(0), n(k)(1), . . . , n(k)(N + V − 1)

]T
,

x(k) =
[
x(k)(0), x(k)(1), . . . , x(k)(N − 1)

]T
, (2.5)

and H(k) is the channel convolution matrix. The matrix H (k) has dimension (N +

V )×N and the form

H(k) =




h(k) 0 . . . 0

0 h(k) . . . 0
...

...
. . .

...

0 0 . . . h(k)




, (2.6)

where h(k) =
[
h(k)(0), h(k)(1), . . . , h(k)(V )

]T
.

The channel coefficients, h(k,t)(l) in (2.3), are time-varying complex random vari-

ables. How quickly the channel coefficients vary as a function of t is an important

channel parameter, and it depends on the statistical characteristics of the channel.

Details about the statistical characteristics of the channels considered in this thesis

are presented in the next section.

2.1.2 Statistical Channel Models

In addition to ray-tracing models and spatial geometric models, fading channels

are also commonly modeled using a range of different statistical models. The most

commonly used models are Ricean and Rayleigh [37]. The former is suitable for an

environment where there are many small scatterers or reflectors and also in which a

line-of-sight (LOS) path is present. Likewise, the Rayleigh fading channel model is

suitable for an environment where there are many small reflectors or scatterers but
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no LOS path. In addition, the Rayleigh fading channel model is simple, physically

based, reasonable for urban environments and is sometimes considered as a worst

case scenario. Hence, we use the Rayleigh fading channel model.

In Rayleigh fading, the channel coefficients, h(k,t)(l), are zero mean circularly

symmetric complex Gaussian (ZMCSCG) random variables of variance σ2
l , denoted

by h(k,t)(l) ∼ CN (0, σ2
l ). Therefore, the envelope or the magnitude of each channel

coefficient, |h(k,t)(l)|, is Rayleigh distributed. In most cases the channels are normal-

ized so that the sum of the powers from all paths is equal to one, i.e.
∑V

l=0 σ2
l = 1.

How quickly a wireless channel or the channel coefficients change with time is an

important property in the performance analysis of wireless communication systems.

The rate of channel variation has a significant impact on several aspects of the

communication problem. A statistical quantity that models this relationship is the

auto-correlation function of the channel coefficients. There are different models for

the auto-correlation function of the channel coefficients, such as the classical Jakes

model and the mobile-to-mobile model. We use the classical Jakes model which

assumes an omni-directional antenna has waves arriving in the horizontal plane,

there are a large number of reflected waves and a uniform received power over the

incident angles. The auto-correlation function of the channel coefficients in this case

is given as [38],

R(τ) = E
{

h(k,t)(l)
[
h(k,t+τ)(l)

]∗}

= J0(2πfDτ), (2.7)

where E {.} denotes expectation, (.)∗ denotes complex conjugation, J0(.) represents

the zero order Bessel function of the first kind, fD is the Doppler frequency (max-

imum Doppler shift), and τ is the time displacement. The Doppler frequency rep-

resents the maximum shift in frequency of a multipath wave due to relative motion

between the transmitter and the receiver. This can be given as,

fD =
vfc

c0

, (2.8)

where v, fc, and c0 are the relative speeds of the transmitter and the receiver, the

carrier frequency, and the speed of light, respectively.
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Figure 2.4: Channel coefficient variation with time in a Rayleigh fading channel at
40Hz Doppler.

An example of how a wireless channel changes with time is included here. Con-

sider a frequency selective Rayleigh fading channel with channel memory V = 2.

The channel is normalized such that σ2
0 = 0.5, σ2

1 = 0.3 and σ2
2 = 0.2. Figure 2.4

shows the channel coefficients’ magnitude variation with time at a Doppler frequency

of 40Hz. As seen in Fig. 2.4, the channel coefficients vary with time. This varia-

tion is dependent on the Doppler frequency. If the Doppler frequency is high the

channel variation will be higher within a given time period. Hence, the validity of

the assumption that the channel remains constant for a block period will depend on

the block period and the rate of channel variation. Thus, if the channel variation is

higher, then the block size has to be decreased accordingly to make the assumption

valid.

The fading models given in this section are mainly for SISO channels. However,

these models can be applied to the MIMO scenario as shown in the next section.
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2.1.3 Fading MIMO Channel

Chapters 5, 6 and 7 of the thesis focus on mainly MIMO relaying systems. Any

link in a MIMO relaying system can be modeled as a normal MIMO link as shown

in Fig. 2.5. The MIMO system shown has ns transmit and nd receive antennas,

and each antenna of the source station sends a symbol from a complex symbol

alphabet within each symbol period. The transmit symbol is encoded, modulated,

up-converted and launched into the radio link. At the destination, the signals are

down-converted to baseband, sampled, and passed on to the decoder to extract the

message. For the sake of convenience, the work considered in this thesis on MIMO

relaying assumes that the channels are frequency-flat so that there is no ISI. Also

the source and the destination stations are assumed to be perfectly synchronized.

In this condition, the received signal at the destination can be given by [37],

y = Hx + n, (2.9)

where x is a vector of ns transmitted symbols, y is a vector of nd received observa-

tions, n is a circularly symmetrical complex Gaussian noise vector with variance σ2
n

and H is a nd × ns channel matrix defined by:

H =




h1,1 h1,2 . . . h1,ns

h2,1 h2,2 . . . h2,ns

...
...

. . .
...

hnd,1 hnd,2 . . . hnd,ns




. (2.10)

The entries of H , hi,j, are the complex baseband equivalents of the channel coeffi-

cients between the jth transmit antenna and the ith receive antenna. In this work

it is assumed that the entries of H are independent, identically distributed (i.i.d.)

circular symmetric complex Gaussian with zero mean and unit magnitude variance.

Hence, hi,j ∼ CN (0, 1) and the envelopes of the channel entries are Rayleigh dis-

tributed and can be modeled as in Sec. 2.1.2.
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Figure 2.5: Block diagram of a MIMO system.

2.2 Space-Time Block Codes

In wireless communications, diversity techniques are widely used to reduce the the

effects of multipath fading as they improve the reliability of transmission without

increasing the transmission power or sacrificing the bandwidth [39, 40]. Diversity

techniques require multiple copies of the transmitted signals at the receiver, all

carrying the same information and not too highly correlated. As a result, the prob-

ability of all copies experiencing a simultaneous deep fade will be low compared

to the probability that a single copy of the signal is in a deep fade. A number of

different methods are used to achieve diversity. These include diversity in time,

frequency and space. Space diversity, also called antenna diversity, is perhaps the

most popular technique. This is implemented by using multiple antennas, usually at

the receiver, and is hence known as receiver diversity. Receiver diversity can easily

be achieved in an uplink (from mobile to base station) scenario by implementing

multiple antennas at the base station. However, receiver diversity is more difficult

to implement in a down link scenario due to many reasons, such as the size, cost

and power requirements of implementing multiple antennas in the mobile terminals.

Because of these requirements, it is more practical to use transmit diversity for the

downlink. In transmit diversity, messages to be transmitted are usually processed

at the transmitter and then sent from multiple antennas.

It has been shown that in transmit diversity systems, error performance can be

further improved by using error control coding [41, 42]. Codes designed for multiple
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Figure 2.6: Block diagram of an Alamouti scheme.

antenna transmission or transmit diversity are called space-time codes (STCs) [9].

There are several different types of coding techniques available today, each with a

unique performance and complexity. These codes include, space-time block codes

(STBCs), space-time trellis codes (STTCs) and layered space-time codes. In this

research, STBCs are used in Chapters 3 and 4 due to their simplicity compared

to other STCs. Further, STBC systems specially designed to have orthogonality

between the sequences generated by the two transmit antennas can lead to a much

simpler receiver structure. Hence, some background STBCs is included here.

2.2.1 Alamouti Space-Time Block Code

The Alamouti STBC [10] is a STBC that provides full transmit diversity for systems

with two transmit antennas. In addition, the Alamouti code achieves full transmit

diversity gain with a simple decoding algorithm. Figure 2.6 shows a block diagram

of an Alamouti scheme.

The STBC encoder outputs are transmitted in two consecutive signal periods

from two transmit antennas. During the first signal period, two symbols, x1 and

x2, are transmitted simultaneously from antennas one and two, respectively. In the

second signal period, −x∗2 (x2 complex conjugated and negated) is transmitted from

antenna one and x∗1 from antenna two. Assuming the channels are frequency-flat

and the channels’ coefficients remain constant for two consecutive signal periods,

the received signals during two consecutive signal periods can be given as:

y1 = h1x1 + h2x2 + n1, (2.11)

y2 = −h1x
∗
2 + h2x

∗
1 + n2. (2.12)
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In (2.11) - (2.12), h1 and h2 are the channel coefficients for channels one and two,

respectively, and n1 and n2 are additive white complex Gaussian noise terms with

zero-mean and variance σ2
n for signal periods one and two, respectively. Assuming

the channels are known at the receiver, the transmitted symbols can be decoupled

using combining as follows. First, we complex conjugate the received signal during

the second signal period and stack the signals to give

 y1

y∗2


 =


 h1 h2

h∗2 −h∗1





 x1

x2


 +


 n1

n∗2


 . (2.13)

Then, the decoder decouples the message symbols using the combining matrix as

 z1

z2


 ,


 h1 h2

h∗2 −h∗1



† 
 y1

y∗2




=


 |h1|2 + |h2|2 0

0 |h1|2 + |h2|2





 x1

x2


 +


 h∗1n1 + h2n

∗
2

−h1n
∗
2 + h∗2n1


 , (2.14)

where z1 and z2 are the decoder outputs. Note that z1 is only a function of x1 and z2

is only a function of x2. Hence, a simple estimation rule can be used to estimate the

message symbols, x1 and x2. As mentioned before, the advantage of the Alamouti

code is that it achieves full diversity gain with a simple decoding algorithm. The

Alamouti code is designed for frequency-flat fading environments and is not suitable

for frequency-selective channels. Hence, Lindskog and Paulraj developed a modified

Alamouti code, called the time-reversal space-time block code (TR-STBC), that is

suitable for frequency-selective channels [25].

2.2.2 Time-Reversal Space-Time Block Code

Again consider the scenario in which the transmitter has two transmitting antennas

and the receiver has one antenna. The TR-STBC encoding is performed in the

following manner [25]. Data symbols are transmitted from the antennas in blocks

of length N . During the k-th block interval, where k is even, antenna 1 transmits

the symbol block,

x
(k)
1 =

[
x

(k)
1 (0), . . . , x

(k)
1 (N − 1)

]T

, (2.15)
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and antenna 2 transmits the symbol block,

x
(k)
2 =

[
x

(k)
2 (0), . . . , x

(k)
2 (N − 1)

]T

. (2.16)

During the k + 1-th block interval, x
(k)
2 is time reversed, complex conjugated and

negated to create

x
(k+1)
1 = −x̃

∗(k)
2 =

[
−x

∗(k)
2 (N − 1), . . . ,−x

∗(k)
2 (0)

]T

. (2.17)

This is transmitted by antenna 1. Also, x
(k)
1 is time reversed and complex conjugated

to create

x
(k+1)
2 = x̃

∗(k)
1 =

[
x
∗(k)
1 (N − 1), . . . , x

∗(k)
1 (0)

]T

, (2.18)

which is transmitted by antenna 2. After each data block, zero-padding (ZP) con-

sisting of V zero symbols is inserted to prevent inter-block interference, where V is

the channel memory.

In TR-STBC, it is assumed that the CIRs of the two channels are fixed over two

consecutive blocks. Then, the received blocks

y(k) =
[
y(k)(0), . . . , y(k)(N + V − 1)

]T
,

y(k+1) =
[
y(k+1)(0), . . . , y(k+1)(N + V − 1)

]T
,

in the presence of additive white noise are given by

y(k) = H
(k)
1 x

(k)
1 + H

(k)
2 x

(k)
2 + n(k),

y(k+1) = H
(k)
1 x

(k+1)
1 + H

(k)
2 x

(k+1)
2 + n(k+1). (2.19)

In (2.19) n(k) and n(k+1) are noise vectors with covariance matrix σ2
DI(N+V ), and

H
(k)
1 and H

(k)
2 are the channel convolution matrices for channels 1 and 2, respec-

tively. The noise samples and data symbols are assumed to be i.i.d. with zero means

and variances σ2
D and σ2

x, respectively. The matrix H
(k)
i has dimension (N +V )×N

and the form

H
(k)
i =




h
(k)
i 0 . . . 0

0 h
(k)
i . . . 0

...
...

. . .
...

0 0 . . . h
(k)
i




, (2.20)
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where h
(k)
i =

[
h

(k)
i (0), h

(k)
i (1), . . . , h

(k)
i (V )

]T

is the CIR of the link between the i-th

transmitting antenna and the receiver. Using encoding rules (2.17) and (2.18) and

stacking the observation vectors, we obtain

y =


 y(k)

ỹ∗(k+1)


 = Hx + n

,


 H

(k)
1 H

(k)
2

H̃
∗(k)

2 −H̃
∗(k)

1





 x

(k)
1

x
(k)
2


 +


 n(k)

ñ∗(k+1)


 , (2.21)

where the matrix H̃
∗(k)

i has the same form as (2.20) with h
(k)
i replaced by h̃

∗(k)

i

(time-reversed and complex conjugated h
(k)
i ). The matrix H has the property that

the transmitted blocks, x
(k)
1 and x

(k)
2 , become decoupled by multiplying both sides

of (2.21) by the matrix

Hd =


 H̃

∗(k)

1d H
(k)
2d

H̃
∗(k)

2d −H
(k)
1d


 (2.22)

where matrices H
(k)
id and H̃

∗(k)

id have the same form as (2.20) but with dimensions

(N + 2V )× (N + V ). Thus, the resulting output from the TR-STBC decoder is

z =


 z

(k)
1

z
(k)
2


 = Hd y

=


 G(k) 0

0 G(k)





 x

(k)
1

x
(k)
2


 + Hd


 n(k)

ñ∗(k+1)


 , (2.23)

where

G(k) = H̃
∗(k)

1d H
(k)
1 + H

(k)
2d H̃

∗(k)

2

= H̃
∗(k)

2d H
(k)
2 + H

(k)
1d H̃

∗(k)

1 .

As with the Alamouti code, the TR-STBC decoder output has the property that

z
(k)
1 is only a function of x

(k)
1 and z

(k)
2 is only a function of x

(k)
2 . Hence, in TR-STBC

systems, the message symbol blocks, x
(k)
1 and x

(k)
2 , can be estimated separately with

a simple equalizer while still achieving the full diversity gain.
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2.3 Adaptive Block Equalization

In this section we give a brief review of adaptive block equalization. Adaptive

equalization is used in Chapters 3 and 4 in combination with STBC.

Communication systems involving frequency selective channels have delay spread,

which causes ISI. Equalization is a method that is used in receivers to alleviate the

effects of ISI [43]. Equalization techniques fall into two broad categories: linear

and nonlinear methods. Linear techniques, such as zero-forcing (ZF) and minimum

mean square error (MMSE) equalization, are generally the simplest to implement.

However, nonlinear techniques, such as decision-feedback equalization (DFE) and

maximum likelihood sequence estimation (MLSE), have better system performance

with higher complexity. The optimal equalization technique is MLSE. Unfortu-

nately, the complexity of this technique grows exponentially with memory length,

and is therefore impractical for most channels of interest. Hence, to reduce the com-

plexity of the equalizer and also to achieve reasonable system performance, MMSE

equalization methods and their derivatives are used in this research.

Most wireless channels change over time, and hence the CIRs at a given time

are not known when the receivers are designed. Therefore, practical receivers must

learn the channels and adapt to any channel variation. To do this, the receivers

often contain an adaptive equalizer. This adaptive equalizer periodically estimates

the CIR and updates the equalizer taps accordingly. This process is called equalizer

training. During training, the equalizer taps are updated based on a known training

sequence or block that has been sent over the channel. How often the training

block needs to be sent depends on the number of equalizer taps, the convergence

speed of the training algorithm and also the rate of the channel variation. There

are several types of training algorithms with different complexity and performance

levels. The most commonly used algorithms are the LMS and RLS algorithms. The

LMS algorithm has lower complexity compared to the RLS algorithm. However,

the RLS algorithm has better performance than the LMS algorithm due to faster

convergence. In Chapter 3 and 4 the block RLS adaptive algorithm is used instead
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of other low complexity adaptive algorithms like LMS. This is because the system

involves block equalization so the taps are updated only after each block, and hence

very fast channel tracking is required to bring down the training overhead. The RLS

method provides the extra convergence speed required. Preliminary simulations

showed that the LMS approach did not converge quickly enough. Hence, the block

version of the RLS algorithm is described below.

Consider the transmission scenario given in Sec. 2.1.1. The received signal during

the k-th block is

y(k) =
√

ESR H(k) x(k) + n(k). (2.24)

We assume that the block RLS adaptive equalizer has tap weight vector, w, with

q-taps. Then, the equalizer output is written as x̂ = Y (k) w(k), where Y (k) has

dimensions (N + V + q − 1)× q and the form

Y (k) =




y(k) 0 . . . 0

0 y(k) . . . 0
...

...
. . .

...

0 0 . . . y(k)




. (2.25)

Assuming V + q − 1 is an even integer, for convenience, the estimation error at the

output of the equalizer is e(k) = x
(k)
ext − Y (k) w(k) where

x
(k)
ext =

[
01×[(V +q−1)/2], (x

(k))T ,01×[(V +q−1)/2]

]T
. (2.26)

The cost function to be minimized in the block RLS algorithm can be expressed as

[44],

J (k) =
k∑

i=1

λk−i‖e(k)‖2 + δλk‖w(k)‖2, (2.27)

where λ is a forgetting factor which ensures that observations in the distant past are

forgotten (λ is a positive constant close to but less than unity). The first component

of (2.27) is the exponentially-weighted sum of squared errors, whereas the second

component is a regularizing term which smoothes or regularizes the solution to the



Chapter 2. Background and Assumptions 26

otherwise ill-posed recursive least-squares problem [44]. The parameter δ is called

the regularizing parameter, which is a small positive constant for high SNR and a

large positive constant for low SNR.

It can be shown that the optimum tap-weight vector, w(k), for which the cost

function of (2.27) attains its minimum value, satisfies the normal equation

Φ(k)w(k) = κ(k). (2.28)

In (2.28), the time-averaged autocorrelation matrix Φ(k) of the tap-input Y (k) has

the form

Φ(k) =
k∑

i=1

λk−i(Y (k))†Y (k) + δλkIq, (2.29)

where Iq is the q × q identity matrix and the q × 1 time-averaged cross-correlation

vector, κ(k), between the tap inputs and the the desired response is

κ(k) =
k∑

i=1

λk−i(Y (k))†x(k)
ext. (2.30)

To compute the solution to (2.28) in a recursive manner, it can be shown that Φ(k)

and κ(k) can be recursively calculated as

Φ(k) = λΦ(k−1) + (Y (k))†Y (k), (2.31)

and

κ(k) = λκ(k−1) + (Y (k))†x(k)
ext. (2.32)
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Table 2.1: Summary of the Block RLS Algorithm

Block RLS Algorithm

Initial conditions:
w(0) = 0q×1

Φ(0) = δ−1Iq

Update taps at each iteration using:

Φ(k) = λΦ(k−1) + (Y (k))†Y (k)

ε(k) = x
(k)
ext − Y (k)w(k−1)

w(k) = w(k−1) + (Φ(k))−1(Y (k))†ε(k)

where λ is a small positive constant close to 1

Then, w(k) in (2.28) can be recursively calculated as,

w(k) = (Φ(k))−1κ(k)

= w(k−1) + (Φ(k))−1κ(k) −w(k−1)

= w(k−1) + (Φ(k))−1
[
λκ(k−1) + (Y (k))†x(k)

ext −Φ(k)w(k−1)
]

= w(k−1)

+ (Φ(k))−1
[
λκ(k−1) + (Y (k))†x(k)

ext − λΦ(k−1)w(k−1) − (Y (k))†Y (k)w(k−1)
]

= w(k−1) + (Φ(k))−1
[
(Y (k))†x(k)

ext − (Y (k))†Y (k)w(k−1)
]

= w(k−1) + (Φ(k))−1(Y (k))†
[
x

(k)
ext − Y (k)w(k−1)

]

, w(k−1) + (Φ(k))−1(Y (k))†ε(k), (2.33)

where ε(k) = x
(k)
ext − Y (k)w(k−1) is the a priori estimation error. Note that in the

block RLS algorithm, the Matrix Inversion Lemma is not applied, as it increases

the dimensionality of the required matrix inversions. The block RLS algorithm is

summarized in Table 2.1.

As mentioned before, the adaptive algorithms require training to estimate the

channel. During the training period (block), the receiver knows the transmitted

symbol block, x(k). Hence, the a priori estimation error can be calculated as ε(k) =

x
(k)
ext−Y (k)w(k−1). However, when the training period is over, the algorithm operates

in decision directed mode. In this mode the a priori estimation error is calculated
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as ε(k) = x̃
(k)
ext − Y (k)w(k−1), where

x̃
(k)
ext =

[
01×[(V +q−1)/2], (x̃

(k))T ,01×[(V +q−1)/2]

]T

, (2.34)

is the slicer output of the receiver. There are several factors that influence the

performance of the adaptive algorithms, such as equalizer length and convergence

rate. The adaptive equalizer parameters: training rate, equalizer length and data

block length, mainly depend on the characteristics of the communication channel.

Hence, once the channel characteristics are known, the adaptive equalizer can choose

its parameters accordingly to achieve the optimum performance.

2.4 Wireless Relaying

In this section, cooperative diversity systems using relays with a single antenna per

station are described. Then, the necessary background for MIMO techniques in

relays is given.

In cellular systems, transmit diversity techniques have generally been consid-

ered only for the downlink to minimize the number of power-hungry and expensive

antennas in the mobile handset. However, to harness the diversity gains afforded

by these transmit techniques in the uplink as well, while maintaining a minimal

number of antennas on each handset, cooperative diversity techniques have recently

been proposed. These techniques allow a mobile terminal to leverage the spatial

diversity offered by other terminals’ antennas to form a virtual multiple-antenna

array [21, 1, 22]. The basic idea is that the source terminal uses other terminals

as relays to forward its information to the destination terminal. In general, there

are two types of relaying systems, non-regenerative and regenerative systems [20],

depending on the nature and the complexity of the relays used. In regenerative

systems, also called decode-and-forward (DF) relaying systems, the relay fully de-

codes the received signal and retransmits the decoded symbol to the destination.

Non-regenerative systems, also called amplify-and-forward (AF) systems, use less

complex relays that do not perform any sort of decoding. The relay simply amplifies
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Figure 2.7: Relaying topology

the received signal and forwards it to the destination. The most basic amplification

method used in wireless relaying is that the relay terminal amplifies the received

signal from the source by using the second order statistics of the source to relay

channel [1, 29]. In this method, the amplification factor, a, of the relay terminal is

a constant and is calculated as:

a =

√√√√ Pr

E
{

y†r yr

} , (2.35)

where yr is the received signal at the relay, a yr is the transmitted signal from the

relay terminal and Pr is the average transmit power of the relay.

Nabar et al. [1] have proposed three different cooperative transmission protocols

that can be used for three terminal based relaying systems, shown in Fig. 2.7. In

Protocol I, the source (S) terminal communicates with both the relay (R) and the

destination (D) terminals during the first time slot. During the second time slot of

the block, both S and R transmit information to D. In Protocol II, S communicates

with R and D over the first time slot. In the second time slot, only R communicates

with D. Protocol III is identical to Protocol I except that D chooses not to receive

during the first time slot. These protocols are summarized in Table 2.2. In the

table, A→B represents communication between A and B.

A variety of cooperative diversity systems with a single relay terminal have been

studied and analyzed in [45, 46, 47]. They have shown that cooperative diversity

systems based on a single antenna per terminal can realize spatial diversity gains.

Relaying systems have been of interest since the 1970s [18, 19]. The main ob-

jective of such systems is to increase the coverage and reduce the need to use high
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Table 2.2: Three Protocols Proposed by Nabar et al. [1].

Time Slot Protocol I Protocol II Protocol III
1 S→R, S→D S→R, S→D S→R
2 S→D, R→D R→D S→D, R→D

power transmissions at the source terminal. The basic idea of a relaying system is

that the source terminal uses other terminals or relays to forward its information

to the destination terminal. Wireless relaying networks have recently been given

considerable attention due to their many advantages. Apart from increasing the

coverage, relaying networks can also achieve better diversity by using cooperative

transmission from several relays as explained above. It is also well known that

MIMO systems can provide better system capacity than single-input, SISO systems

[5]. Hence, relaying has recently been extended to MIMO scenarios [23, 24] to ob-

tain better system capacity, increases in range, and also to achieve better diversity.

The only difference between the cooperative diversity systems described above and

MIMO relaying systems is that in MIMO relaying, the terminals can have multiple

antennas.

2.5 MIMO System Capacity

System capacity is defined as the maximum possible transmission rate such that the

probability of error is arbitrarily small. Capacity analysis of a system is useful for

gaining insights into the effects of various system parameters on its performance.

Today, a wide range of results are available for the capacity analysis of various

MIMO systems [48, 31, 5, 33]. This section presents an overview of the material

required for such an analysis which is required in Chapters 5 and 6. Throughout

the thesis it is assumed that the channel state information (CSI) is not known at

the transmitter but is perfectly known at the receiver. Thus, we now derive the

capacity of MIMO systems assuming that the CSI is not known at the transmitter
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but perfectly known at the receiver.

2.5.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a useful tool to analyze MIMO systems.

Consider the received signal at the destination of the MIMO system described in

Sec. 2.1.3,

y = Hx + n. (2.36)

Using the SVD, the channel matrix H can be written as

H = UDV †, (2.37)

where D is an nd×ns non-negative diagonal matrix and U ∈ Cnd×nd and V ∈ Cns×ns

are unitary matrices. The notation Cx×y denoted as a x× y matrix of complex

numbers. The diagonal elements of D,
√

λ1 >
√

λ2 > . . . >
√

λm, are the positive

singular values of the channel matrix H , where m = min(ns, nd) is the rank of H .

Then, using the SVD, the channel correlation matrix can be decomposed using the

standard eigenvalue decomposition as

HH† = UDD†U †. (2.38)

Furthermore, the columns of U are the eigenvectors of HH† and the columns of V

are the eigenvectors of H†H .

Then, by substituting (2.37) into (2.36), the received signal can be written as

y = UDV †x + n. (2.39)

Premultiplying y by U †, results in

y′ , U †y = D V †x︸︷︷︸
x′

+ U †n︸︷︷︸
n′

= Dx′ + n′. (2.40)
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Note that a unitary transformation of an i.i.d. Gaussian vector (or matrix) does

not change the statistical properties of the vector (or matrix). Hence, the vector

n′ = U †n is statistically independent to the vector n. Rewriting (2.40) gives

y′i =
√

λix
′
i + n′i, i = 1, 2, . . . , m

y′i = n′i, i = m + 1,m + 2, . . . , nd. (2.41)

From (2.41), only m received components depend on the transmitted signal and the

equivalent system described in (2.41) has no interference . Thus, the MIMO channel

can be considered as consisting of m uncoupled parallel sub-channels, each with a

singular value of the channel matrix as the amplitude channel gain.

2.5.2 Capacity

Since the MIMO channel can be described as a set of m uncoupled sub-channels, the

overall capacity is the sum of the individual capacities. Assuming that the transmit

power from each antenna in the MIMO system is P/ns, the ergodic channel capacity,

denoted as C, can be given as [11],

C = E

{
m∑

i=1

log2

(
1 +

λiP

nsσ2
n

)}
, (2.42)

where E {·} denotes expectation with respect to the random vector λ = (λ1, . . . , λm)T .

Using results in [11], the ergodic channel capacity of the MIMO systems given in

(2.42) can also be given in matrix form as

C = E

{
log2

∣∣∣∣Im +
P

nsσ2
n

W

∣∣∣∣
}

, (2.43)

where |·| denotes the determinant and W is a Wishart matrix defined as

W =





HH† nd < ns

H†H nd > ns

. (2.44)

Then, rewriting (2.43) gives:

C = E

{
log2

∣∣∣∣Im +
P

nsσ2
n

W

∣∣∣∣
}

= m

∫ ∞

0

log2

(
1 +

P

nsσ2
n

λ

)
f(λ) dλ, (2.45)
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where λ denotes an arbitrary eigenvalue of W and f(λ) is the probability density

function (PDF) of λ. Hence, to find the ergodic capacity of the MIMO system

using this approach, the arbitrary eigenvalue distribution of the random matrix W

is needed.

2.5.3 Statistics of Wishart Distributions

Here, the Wishart distribution is described and the joint eigenvalue density of the

Wishart matrix is given. From this density, the PDF of an arbitrary eigenvalue of

the Wishart matrix can be obtained.

The matrix W , defined in Sec. 2.5.2, has a Wishart distribution with parameters,

m and n = max(ns, nd). The joint density of the unordered eigenvalues of W is

given as [11, 49]

f(λ1, . . . , λm) , f(λ) =
πm(m−1)

m! CΓm(m) CΓm(n)

m∏

k=1

λn−m
k e−λk

m∏

k<p

(λk − λp)
2, (2.46)

where CΓm(n) denotes the complex multivariate gamma function,

CΓm(n) = πm(m−1)/2

m∏

k=1

Γ(n− k + 1). (2.47)

Then, the PDF of an arbitrary eigenvalue of W , f(λ), can be obtained as,

f(λ1) =

∫ ∞

0

. . .

∫ ∞

0

f(λ) dλ2 . . . dλm. (2.48)

Using this result, the ergodic capacity of the MIMO system given in (2.45) can be

evaluated.

2.5.4 Pseudo-Wishart Distribution

The pseudo-Wishart distribution [50], a form of Wishart distribution, plays an im-

portant role in the analysis of communication systems using diversity in Rayleigh

fading. In MIMO systems, one situation where the pseudo-Wishart distribution

arises is when the transmitted signals are independent but the received signals are

correlated. Consider the MIMO channel matrix H given in (2.36) to explain the
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pseudo-Wishart distribution. Let the columns of the matrix H be given by hi;

i.e., H = [h1, . . . , hns ], where i = 1, . . . , ns. Assume that the transmitted signals

are independent but the received signals are correlated in Rayleigh fading, then

h1, . . . , hns , are nd × 1 independent zero-mean complex circular Gaussian random

vectors such that each hi has a CN (0,Σ) distribution, where

Σ = E
{

hih
†
i

}
. (2.49)

Then, the matrix HH† has a Wishart distribution when ns > nd and a pseudo-

Wishart distribution when ns < nd. The important point to note is that when

Σ is not a scaled version of Ind
and ns < nd, the Hermitian matrix HH† has a

pseudo-Wishart distribution. However, the matrix H†H does not have a Wishart

distribution. It is only when Σ is a scaled version of Ind
and ns < nd, HH†

pseudo-Wishart and H†H is Wishart. Therefore, there are situations where pseudo-

Wishart and Wishart distributions cannot be exchanged. In such a situation, we

have to use statistics of the pseudo-Wishart distribution for the analysis.



Chapter 3

Adaptive Time-Domain Block

Equalization for TR-STBC

Decoding

One of the main problems in wireless transmission is the time-varying multipath fad-

ing of the wireless channel. However, spatial diversity techniques have been proven

to be effective at mitigating this multipath fading. In [10], Alamouti proposed a

transmit diversity scheme for flat fading channels that achieve the same diversity

benefits as can be achieved by receive diversity, while requiring only linear decoding

complexity. In [25], Lindskog and Paulraj have extended Alamouti’s method for

frequency selective fading channels. Their time reversal-space time block coding

(TR-STBC) scheme combines time-domain filtering, conjugation and time reversal

operations. The outputs of the TR-STBC decoder are decoupled but contain resid-

ual inter-symbol interference (ISI) which must be mitigated using equalizers. Un-

fortunately, to perform this equalization, the optimal maximum likelihood sequence

estimation (MLSE) techniques have exponentially increasing complexity with the

signal constellation size and the channel impulse response length.

Several more practical block STBC structures for frequency selective fading chan-

nels, including single carrier-frequency domain equalizers (SC-FDE) [26] and orthog-

35
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Figure 3.1: STBC receiver block diagram with channel estimation.

onal frequency division multiplexing (OFDM) transcievers [27], have been proposed.

In these schemes, the decoding and equalization of the STBC transmissions require

explicit estimation of the channel impulse response (CIR) at the receiver as shown in

Fig. 3.1. Usually, channel estimation is done by adding a training sequence to each

transmitted block and using it to estimate the channel, which tends to increase the

system overhead. Reduction of the system overhead requires using longer blocks,

which may not be viable for channels with fast variations.

An improved approach is an adaptive joint decoder and equalizer or adaptive re-

ceiver structure that does not require separate CIR estimation, reducing the system

overhead and at the same time providing a tracking mechanism for time-varying

channels. The main advantage of adaptive receivers is that they can eliminate the

need for adding a training sequence to each data block. They use a few train-

ing blocks during initialization, and then they can track the channel variations in

decision-directed mode. In this way, the system overhead can be reduced. One of

the important performance parameters of the adaptive equalizers is how fast the

equalizers track the channel variation. Usually, this depends on the type of adap-

tive algorithms used and also the length of the equalizers. If the length is short the

equalizers converge faster, hence, adapting to the channel variation quickly. But, on

the other hand, if the length is too short, the equalizer will not be able to remove

the ISI completely. Hence, the performance will decreases. Therefore, to get better

performance from the adaptive equalizers, a system designer must be be able to

choose a suitable minimum equalizer length for the channel so that it can track the

channel faster while not loosing too much performance due to the shorter equalizer
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length.

In [28], such a adaptive receiver scheme has been proposed for SC FDE-STBC

systems. One advantage of this particular scheme is that it delivers recursive least

squares (RLS) performance using least mean square (LMS)-order complexity. How-

ever, as the scheme is based on frequency domain block equalization, the equalizer

is constrained to have the same length as the data block length. This means that

the length and hence, the complexity of the equalizer grows as the block length

increases, even when the CIR is very short. Therefore, the scheme is advantageous

primarily for channels with very long delay spreads.

Exploiting the efficiency of processing the received data in the time-domain, in

this chapter we present an adaptive joint decoder and equalizer scheme for TR-

STBC systems with an equalizer length that is independent of the block length,

making it suitable for channels with short CIRs. Specifically, we propose a time-

domain block equalizer for TR-STBC transceivers, which eliminates the need for a

separate decoding block requiring explicit channel estimation. The block equalizer

length is also independent of the data block length, making it particularly suitable

for short delay spread channels. We first use the TR-STBC encoding and decoding

process explained in Sec. 2.2.2 to derive the MMSE equalizer. Then, from the

MMSE equalizer, our adaptive receiver scheme is derived. Finally, using simulations,

the performance of the time-domain RLS based adaptive receiver is presented and

compared with the frequency domain adaptive receiver given in [28].

3.1 MMSE Equalizer

Consider the TR-STBC encoding and decoding process given in Sec. 2.2.2, which

is also depicted in Fig. 3.2. As seen in (2.23), the transmitted blocks x
(k)
1 and x

(k)
2

are decoupled by the decoder, but still the decoupled blocks have ISI within them.

Hence, an equalizer needs to be used to remove the ISI.
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Figure 3.2: TR-STBC encoder and decoder.

The decoupled outputs from the TR-STBC decoder are given by

z1 = Gx1 + H̃
∗
1d n + H2d ñ∗

z2 = Gx2 + H̃
∗
2d n−H1d ñ∗, (3.1)

where the superscripts, (k) and (k + 1), are dropped from the notation. We see

that the decoupled signals have equal channel gain matrices and it can be shown

that the noise statistics are the same. Therefore, the same MMSE tap weights can

be applied to both blocks, z1 and z2, to remove the ISI. Hence, we only consider

a block of one decoder’s outputs, z1 = [z1(0), . . . , z1(N + 2V − 1)]T , when deriving

the MMSE solution for the equalizer taps.

It is assumed that the q-tap equalizer is symbol spaced with a tap weight vector

w. For convenience, q is assumed to be an odd integer. The output of the block

equalizer is written as, x̂1 = Z1 w, where Z1 has dimension (N + 2V + q − 1) × q

and has the form

Z1 =




z1 0 . . . 0

0 z1 . . . 0
...

...
. . .

...

0 0 . . . z1




. (3.2)

The estimation error at the output of the equalizer is

e1 = x1ext −Z1 w (3.3)

where x1ext =
[
01×[(2V +q−1)/2],x

T
1 ,01×[(2V +q−1)/2]

]T
.

To minimize the mean square error (MSE)

J(w) = E
{‖x1ext −Z1 w‖2} , (3.4)
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with respect to the tap weight vector, w, we take the gradient with respect to w∗

and set the result equal to zero, yielding the optimum minimum mean square error

(MMSE) equalizer tap weight vector

wo =
[
E{Z†

1 Z1}
]−1

E{Z†
1 x1ext} . (3.5)

It can be shown that the (q × q)-dimensional autocorrelation matrix, E{Z†
1 Z1},

has the form

E{Z†
1 Z1} =




Tr0(Rz) Tr1(Rz) . . . Tr(q−1)(Rz)

Tr−1(Rz) Tr0(Rz) . . . Tr(q−2)(Rz)
...

...
. . .

...

Tr−(q−1)(Rz) Tr−(q−2)(Rz) . . . Tr0(Rz)




, (3.6)

where

Rz = E{z1 z†1} = σ2
xGG† + σ2

nH̃
∗
1d H̃

∗†
1d + σ2

nH2d H†
2d,

is the autocorrelation matrix of z1, and Trk(Rz) is the k-th off-diagonal trace

of matrix Rz. Similarly, defining the q-dimensional cross-correlation vector p
4
=

E{Z†
1 x1ext}, it can be shown that its k-th row can be written

p(k, 1) = Tr0{[G( max(1, V + 1 + p− k) :

min(N + 2V, V + N + p− k),

max(1, 1− V − p + k) :

min(N, N + V − p + k))]†}, (3.7)

where p = (q + 1)/2 and we use MATLAB notation G(i : j, k : `) to represent

the submatrix formed by taking the i-th through j-th rows of the k-th through `-

th columns of G. The optimum MMSE equalizer tap weights can be obtained by

substituting (3.6) and (3.7) into (3.5).

The TR-STBC decoder and the MMSE equalizer derived above require channel

state information at the receiver. The aim of the next section is to design an adaptive

receiver which does not require channel state information at the receiver.
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Figure 3.3: (a) Separate decoder and equalizer for TR-STBC receiver (b) Combined
decoder and equalizer for TR-STBC receiver.

3.2 Adaptive Receiver Scheme

To design the adaptive receiver, the first step is to combine the TR-STBC decoding

and equalization operations using a single time-domain block equalizer, moving from

block diagram (a) to (b) in Fig. 3.3. Using the property that the Wiener tap weight

vector wo is the same for both outputs z1 and z2, from (2.21) – (2.23), the equalizer

outputs for the two streams can be written as


 x̂1

x̂2


 =


 W 0

0 W





 z1

z2




=


 W H̃

∗(k)

1d W H
(k)
2d

W H̃
∗(k)

2d −W H
(k)
1d





 y(k)

ỹ∗(k+1)


 , (3.8)

where equalizer matrix W has dimension (N + 2V + q− 1)× (N + 2V ) and has the

form shown in (2.20) with h
(k)
i replaced by w. Using the analysis of Sec. 3.1, it can

be also shown that optimal tap weight vector wo has the conjugate time-reversal

symmetry property wo = w̃∗
o. Enforcing this property on the time-domain equalizer
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(TDE), (3.8) can be rewritten as

 x̂1

x̂2


 =


 W̃

∗
H̃

∗
1d W H2d

W̃
∗
H̃

∗
2d −W H1d





 y(k)

ỹ∗(k+1)




4
=


 Ã

∗
1 A2

Ã
∗
2 −A1





 y(k)

ỹ∗(k+1)


 , (3.9)

where joint equalizer-channel matrices A1 = W H1d and A2 = W H2d. Time

reversing and conjugating x̂2, we have

 x̂1

˜̂x∗2


 =


 Ã

∗
1 y(k) + A2 ỹ∗(k+1)

A2 ỹ∗(k) − Ã
∗
1 y(k+1)


 . (3.10)

Defining the combined equalizer and decoder vectors, w̃∗
1 = conv(w,h1) and w2 =

conv(w,h2) of length qa = q + V , the combined decoder and equalizer output can

be written as

 x̂

(k)
1

˜̂x∗(k)

2


 =


 Y (k) Ỹ

∗(k+1)

−Y (k+1) Ỹ
∗(k)





 w1

w2


 4

= Uw(k), (3.11)

where matrix Y (i) has dimension (N +2V +q−1)× (q+V ) and has the form shown

in (2.20) with h
(k)
i replaced by y(i) and Ỹ

∗(i)
is formed by replacing y(i) by ỹ∗(i) in

Y (i).

The equalizer tap weights w(k) in (3.11) are now isolated, and can be easily

adapted using the block version of the RLS algorithm [44]. At the output of the

block equalizer, the estimation error vector e(k) is

e(k) ,


 e

(k)
1

e
(k)
2


 =


 x

(k)
1ext

x̃
∗(k)
2ext


−


 x̂

(k)
1

˜̂x∗(k)

2


 (3.12)

where

x
(k)
1ext =

[
01×[(2V +q−1)/2], (x

(k)
1 )T ,01×[(2V +q−1)/2]

]T

x̃
∗(k)
2ext =

[
01×[(2V +q−1)/2], (x̃

∗(k)
2 )T ,01×[(2V +q−1)/2]

]T

.

Using a similar procedure to that described in Chapter 2, the RLS algorithm can

be derived and is summarized in Table 3.1.
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Table 3.1: Block RLS Algorithm for TR-STBC Systems

Block RLS Algorithm

Initial conditions:
w(0) = 02qa×1

Φ(0) = I2qa×2qa

Update taps at each iteration using:

Φ(k+2) = λΦ(k) + U †U
w(k+2) = w(k) + (Φ(k+2))−1U †e(k)

where λ is small positive close to 1
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Figure 3.4: Adaptive receiver block diagram for TR-STBC system.

The block diagram of the adaptive receiver is depicted in Fig. 3.4. Because

the matrix U contains four convolution sub-matrices and the convolution operation

is commutative, an equivalent linear filter representation for the block equalizer is

shown in Fig. 3.5. After stripping off the head and tail of the equalizer output block

and a conjugate time-reversal operation, the slicer produces the symbol estimates.

The output of the equalizer is compared with the desired response to generate the

error vector, e(k), which is then used to update the equalizer tap weights according

to the adaptive algorithm. The equalizer operates in training mode for the training

blocks within a frame and switches to decision directed mode for the data blocks.
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Figure 3.5: Equivalent time-domain filter representation of block equalizer.

3.3 Simulation Results and Discussions

To simulate the adaptive TDE for TR-STBC systems, a 4-QAM system is imple-

mented with a symbol rate of 271 kSymbols/s. The typical urban (TU) channel [51]

is used with a GMSK transmit pulse shape [36]. In this case, the overall length of

the CIR memory plus pulse shaping is V = 3.

We also compared our adaptive scheme for TR-STBC systems with the adaptive

scheme that was proposed for SC FDE-STBC systems in [28]. The TR-STBC system

results are denoted as ‘TDE’ and the SC FDE-STBC system results are denoted as

‘FDE’. Unless otherwise noted, a block size of N = 256 symbols is used with a ZP

or cyclic-prefix (CP) length of 3 symbols. In the FDE case, CP is used instead of

ZP.

As the number of taps in the TDE is independent of the data block size, an

initial simulation is needed to find a suitable length for the TDE operating over the

TU channel. Figure 3.6 shows the MMSE as a function of the number of TDE taps

for different signal-to-noise ratio (SNR) values. The figure also shows the MMSE

for the FDE. Because the FDE is forced to have as many equalizer taps as the block

size, the length of the FDE is kept constant at 256. We see that the optimum length

of the TDE increases with SNR but is much less than the length of the FDE. As

a conservative value, which works well for all of the SNR values, we choose a TDE

length of qa = 12 for the remaining simulations in this chapter.

The faster an equalizer converges, the less training symbols are required and
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the better the equalizer can track time-varying channels. Here, the MSE dynamic

convergence of the TDE and FDE equalizers is compared. Figure 3.7 shows the

convergence behaviors of the RLS TDE and FDE adaptive algorithm. Again, the

theoretical MMSE solutions for the two equalizers are given as references. The step

size parameters of the RLS adaptive algorithm for the TDE and FDE were set to

λ = 0.9. Figure 3.7 shows that the TDE running the RLS algorithm converges the

fastest (within one block) to the MMSE solution, whereas the FDE RLS adaptive

algorithm takes several blocks to reach the MMSE solution. The main reason for

the FDE to converge at a slower rate than the TDE might be due to the larger tap

length of the FDE compared to the TDE.

The steady-state SER performances are also considered for the two equalizers,

where each steady-state SER is measured during the data payload portions of the

transmission frame. Although the analysis assumes that the channel is constant for

two consecutive data blocks, in simulations, the TU channel varies from symbol to

symbol with a Doppler frequency of 10Hz to more realistically model a real world

fading environment. For this simulation, Frame Structure A (Fig. 3.8) is used, which

has a total of 16 blocks of which 4 blocks are used for training. A ZP/CP of length

3 symbols is inserted after/before each block. The training and data blocks have

the same size, N = 256. The step size parameter, λ, also plays an important role

in the performance of the adaptive equalizers. By decreasing λ the system is more

stable and the steady state value of MSE decreases, however the convergence of the

adaptive algorithm will get slower [44]. Therefore, the basic rule should be that

for a faster varying channel, λ has to be bigger to achieve faster convergence. In

this simulation, simulation is performed for all possible values of λ in a grid on [0,1]

and the value giving the minimum SER value is chosen. The results are shown in

Fig. 3.9. The TDE RLS outperforms the FDE RLS algorithm. The main reason

is that the TDE RLS requires far fewer equalizer taps than the FDE RLS for the

considered channel. However, the tap length of the FDE RLS is fixed with the

data block length (N = 256) even though the channel is very short. Therefore, the

TDE RLS algorithm adapt much faster to the changing channel than the FDE RLS
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Figure 3.8: Frame Structure A.
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Figure 3.9: SER curves for TDE and FDE at 10Hz Doppler frequency.

algorithm. As a reference we also include the MMSE (non-adaptive) SER values

where the receiver has perfect knowledge of the CIR at the middle of each individual

transmission block. The MMSE SERs are almost the same for both FDE and TDE

schemes. Figure 3.9 also shows an error floor for the higher SNR regions of both

adaptive schemes. This floor is due to the fact that adaptive schemes require more

time to converge to the optimum value at higher SNR values. One possible solution

for this is to increase the rate of training or decrease the block size. However, both

these options will increase the system overhead.

One of the advantages of our new TDE scheme over the existing FDE scheme
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is that we can use different length training and data blocks in the frame structure.

This makes it easier to mix training and data evenly throughout the frame without

affecting the bandwidth efficiency of the system. Such a mix allows the system to

perform better in fast time-varying channels than frame structures that segregate the

training and data into equal length blocks (e.g., Frame Structure A). On the other

hand, the FDE system requires the same-length data and training blocks. Using this

property of the TDE scheme, Frame Structure B (Fig. 3.10) is introduced in which

data blocks are encapsulated by short training blocks, and at the same time keeping

the total overhead equal to Frame Structure A. In Frame Structure B, each block is

followed by a ZP of length 3 symbols, and each data block and training block has

a length of 192 and 58 symbols, respectively. Using a 10Hz Doppler frequency, the

results are shown in Fig. 3.11. In the figure ‘TDE A’ denotes the results for Frame

Structure A and ‘TDE B’ denotes those for Frame Structure B. Clearly, TDE B

outperforms TDE A, as the new frame structure allows the TDE to better track the

fast time-varying channel conditions.

Overall, the adaptive TDE scheme proposed has better system performance com-

pared to the existing adaptive FDE scheme. However, one of the advantages of the

FDE scheme is that it has a lower complexity. Hence, to compare both schemes, it

is also important to know the complexity of the schemes on a comparable basis. In

the next section we analyze the complexity of the schemes.
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3.4 Complexity of the Adaptive Algorithms

In this section, the complexities involved in computing the TDE and FDE RLS

algorithms are considered. For the complexity analysis, we evaluate the total number

of real multiplications, additions and divisions involved in computing the algorithms.

3.4.1 TDE RLS Algorithm

The TDE RLS algorithm is given in Table 3.1. The following steps explain the com-

plexity involved in computing the TDE RLS equalizer output and the tap weight

adaptation. These computations involve linear convolutions and correlations. Com-

paring research articles [52, 53, 54] on fast convolution and correlation for large

samples, it seems that the fast fourier transform (FFT) algorithm is the best op-

tion. Hence, the FFT algorithm is used to compute the linear convolutions and

correlations.

1. Equalizer output, Uw(k) computation: the adaptive equalizer output consists of
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four linear convolutions:

Y (k)w1 = conv(y(k), w1),

− Y (k+1)w1 = conv(−y(k+1), w1),

Ỹ
∗(k+1)

w2 = conv(ỹ∗(k+1),w2), and

Ỹ
∗(k)

w2 = conv(ỹ∗(k),w2).

Each of these convolutions can be implemented using the FFT algorithm as

conv(y(l),wm) = IFFT(diag(FFT(y(l)))FFT(wm)) (3.13)

where each FFT has N + V + qa − 1 points. By using the FFT algorithm, the

computation of the equalizer output is shown in the Fig. 3.12. From Fig. 3.12,

the equalizer output computation requires 8 FFT operations, four N +V +qa−1

complex multiplications and two N + V + qa − 1 complex additions. Each N -

point FFT operation requires 2N log2 N real multiplications and 3N log2 N real

additions [52]. By defining M = N+V +qa−1, the equalizer output computation

requires 16M log2 M + 16M real multiplications and 24M log2 M + 12M real

additions.

2. Estimation error vector, e(k) computation: the estimation error vector, e(k), is

given in (3.12). Computing the error vector only requires 4N real additions, as

x
(k)
`ext consists of zero padding before and after x

(k)
` .

3. The U †U computation: before trying to evaluate U †U , we define some impor-

tant properties of time reversal matrices using the exchange matrix Em. The ex-

change matrix, Em, is a m×m square matrix with ones along the cross-diagonal

and zeros elsewhere [55]. The inverse of Em is Em so that EmEm = Im, where

Im is an identity matrix of size m×m. If A is a matrix of size m× n, then the

time reversal matrix of A is given by

Ã = EmAEn (3.14)
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and if A is a Toeplitz square matrix of size m×m, then

Ã = AT = EmAEm. (3.15)

Using these matrix properties, U †U can be computed. Defining m = N + V +

qa − 1 and n = qa, then U can be written

U =


 Y (k) EmY ∗(k+1)En

−Y (k+1) EmY ∗(k)En


 . (3.16)

Hence, the matrix U †U can be evaluated as,

U †U =


 (Y (k))†Y (k) + (Y (k+1))†Y (k+1) 0

0 (Y (k))†Y (k) + (Y (k+1))†Y (k+1)




,


 B 0

0 B


 . (3.17)

The matrices (Y (k))†Y (k), (Y (k+1))†Y (k+1) and B = (Y (k))†Y (k) +(Y (k+1))†Y (k+1)

are Hermitian Toeplitz. Therefore, to compute these matrices only the first

column or first row of each matrix needs to be calculated. The first column

of matrix B can be calculated using the FFT algorithm as shown in Fig. 3.12.

This only requires 1 FFT operation, 2M complex multiplications and M complex

additions. Therefore, the U †U computation requires a total of 2M log2 M +8M

real multiplications and 3M log2 M + 6M real additions.

4. The Φ(k+2) = λΦ(k) + U †U computation: from the properties of the matrix,

U †U , it can be shown that the matrix Φ(k+2) is a Hermitian matrix and has the

following form,

Φk+2 =


 A 0

0 A


 (3.18)

where A is Hermitian Toeplitz. Hence Φ(k) is also Hermitian and has the same

form as Φ(k+2). Therefore, to calculate Φ(k+2), we only need to compute the first

column or row of the Hermitian Toeplitz matrix, A. First, the λ multiplica-

tion requires 2qa real multiplications, and then the addition of λΦ(k) and U †U

requires 2qa real additions.
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5. The (Φ(k+2))−1 computation: from matrix inversion properties, the inverse of

Φ(k+2) has the form,

(Φ(k+2))−1 =


 A 0

0 A



−1

=


 A−1 0

0 A−1


 . (3.19)

Therefore, computing (Φ(k+2))−1 only requires computing the inverse of the Her-

mitian Toeplitz matrix A. Here the Trench algorithm given in [55] is used

to calculate the inverse of the Hermitian Toeplitz matrix A. Using this algo-

rithm, the (Φ(k+2))−1 computation requires 10q2
a−23qa +14 real multiplications,

9q2
a − 17qa + 10 real additions, and qa real divisions.

6. The w(k+2) = w(k) + (Φ(k+2))−1U †e(k) computation: defining,

e(k) =


 e

(k)
1

e
(k)
2


 , (3.20)

U †e(k) =


 ∇1

∇2


 (3.21)

and then using Fig. 3.12, the U †e(k) computation requires 4 FFT operations, 4M

complex multiplications and 2M complex additions. The required real operations

are 8M log2 M +16M real multiplications and 12M log2 M +12M real additions.

The multiplication of (Φ(k+2))−1 and U †e(k) requires 8q2
a real multiplications

and 8q2
a − 4qa real additions. Finally, the addition of w(k) and (Φ(k+2))−1U †e(k)

requires 4qa real additions.

Table 3.2 summarizes the real multiplications, additions and divisions involved

in computing the TDE RLS equalizer output and tap weight adaptation.

3.4.2 FDE RLS Algorithm

In this section, the complexity of the RLS FDE system given in [28] is analyzed.

First, a summary of the FDE RLS scheme is given here for clarity. The received

blocks after removing CP in two consecutive time periods are y(k) and y(k+1). Note
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Table 3.2: TDE RLS Algorithm Complexity Summary

Operations Real ‘×’ Real ‘+’ Real
‘÷’

Uw(k) 16M log2 M + 16M 24M log2 M + 12M

e(k) 4N

U †U 2M log2 M + 8M 3M log2 M + 6M

Φ(k+2) 2qa 2qa

(Φ(k+2))−1 10q2
a − 23qa + 14 9q2

a − 17qa + 10 qa

U †e(k) 8M log2 M + 16M 12M log2 M + 12M

(Φ(k+2))−1U †e(k) 8q2
a 8q2

a − 4qa

w(k+2) 4qa

Total 26M log2 M + 40M +
18q2

a − 21qa + 14
39M log2 M + 30M +
4N + 17q2

a − 15qa + 10
qa

that the length of the data blocks after removing CP is N . The RLS FDE output

is given as


 x̂

(k)
1

(x̂
(k)
2 )∗


 =


 diag(y(k)) diag((y(k+1))∗)

diag(−y(k+1)) diag((y(k))∗)





 w1f

w2f


 4

= U fw
(k)
f , (3.22)

where z denotes the Fourier transform of z, given as z = Qz, where Q is the

orthonormal discrete Fourier transform (DFT) matrix. Then, the estimation error

vector, e
(k)
f , at the output of the equalizer is given as

e
(k)
f =


 x

(k)
1

(x
(k)
2 )∗


−


 x̂

(k)
1

(x̂
(k)
2 )∗


 . (3.23)

The RLS FDE algorithm is summarized in Table 3.3.

The following steps explain the complexity involved in computing the FDE RLS

equalizer output and tap weight adaptation.

1. The y(k) and y(k+1) computation: each y is computed by using an N -point FFT

operation. Again, each N -point FFT involves 2N log2 N real multiplications

and 3N log2 N real additions [52]. Therefore, the y(k) and y(k+1) computations

require 4N log2 N real multiplications and 6N log2 N real additions.
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Table 3.3: Block RLS FDE Algorithm

FDE RLS Algorithm

Initial conditions:

w
(0)
f = 02N×1

Φ
(0)
f = δI2N×2N

where δ is small number
Update taps at each iteration using:

Φ
(k+2)
f = λΦ

(k)
f + U †

fU f

w
(k+2)
f = w

(k)
f + (Φ

(k+2)
f )−1U †

fe
(k)
f

where λ is small positive close to 1

2. Equalizer output, U fw
(k)
f , computation: the matrix U f has only two non-zero

elements in each of its rows. Using this property of U f , the equalizer output

computation requires 16N real multiplications and 12N real additions.

3. Estimation error vector, e
(k)
f , computation: the estimation error vector is given

in (3.23). To compute the estimation error vector, first the equalizer output

need to be converted to the time-domain by taking the inverse FFT (IFFT) and

making a decision and then converting back to the frequency domain by taking

the FFT. These computations require a total of 8N log2 N real multiplications

and 12N log2 N real additions as well as a further 4N real additions to compute

the error vector. Hence, the estimation error vector computation requires a total

of 8N log2 N real multiplications and 12N log2 N + 4N real additions

4. The U †
fU f computation: the matrix U †

fU f can be evaluated as

U †
fU f ,


 B 0

0 B


 (3.24)

where

B = diag(y(k))diag((y(k))∗) + diag(−y(k+1))diag((y(k+1))∗) (3.25)

is a real diagonal matrix. Considering the fact that B involves multiplication of

numbers with their conjugates, the computation of B requires 4N real multipli-

cations and 3N real additions.
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5. The Φ
(k+2)
f = λΦ

(k)
f + U †

fU f computation: from the properties of the matrix

U †
fU f , it can be shown that the matrix Φ

(k+2)
f is a real diagonal matrix and has

the following form,

Φ
(k+2)
f =


 A 0

0 A


 (3.26)

where A is real diagonal matrix. Matrix Φ
(k)
f is also a real diagonal matrix and

has the same form as Φ
(k+2)
f . Therefore, to calculate Φ

(k+2)
f , we only need to

compute A. First, the λ multiplication requires N real multiplications, and then

the addition of λΦ
(k)
f and U †

fU f requires N real additions.

6. The (Φ
(k+2)
f )−1 computation: from the matrix inversion properties, the inverse

of Φ
(k+2)
f has the form

Φ−1
k+2 =


 A 0

0 A



−1

=


 A−1 0

0 A−1


 . (3.27)

Therefore, computing (Φ
(k+2)
f )−1 only requires computing the inverse of the real

diagonal matrix, A. This only requires N real divisions.

7. The w
(k+2)
f = w

(k)
f + (Φ

(k+2)
f )−1U †

fe
(k)
f computation: first the U †

fe
(k)
f computa-

tion requires 16N real multiplications and 12N real additions. The multiplica-

tion of (Φ
(k+2)
f )−1 and U †

fe
(k)
f requires 4N real multiplications, and finally, the

addition of w
(k)
f and (Φ

(k+2)
f )−1U †

fe
(k)
f requires 4N real additions.

Table 3.4 summarizes the real multiplications, additions and divisions involved in

computing the FDE RLS equalizer output and tap weight adaptation. To make the

complexity comparison clearer, Fig. 3.13 shows the number of real multiplications

involved in computing the FDE and TDE RLS algorithms. The channel parameters

are fixed to those used in the simulations, and we vary the data block length, N . We

see that the TDE system has higher complexity than the FDE system with around

twice the complexity at large values of N . Thus, the TDE adaptive algorithm has

better system performance but at the cost of increased complexity compared to the

FDE adaptive system.
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Table 3.4: FDE RLS Algorithm Complexity Summary

Operations Real ‘×’ Real ‘+’ Real
‘÷’

y(k), y(k+1) 4N log2 N 6N log2 N

U fw
(k)
f 16N 12N

e
(k)
f 8N log2 N 12N log2 N + 4N

U †
fU f 4N 3N

Φ
(k+2)
f N N

(Φ
(k+2)
f )−1 N

w
(k+2)
f 20N 16N

Total 12N log2 N + 41N 18N log2 N + 36N N
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Figure 3.13: Number of real multiplications required for the TDE and FDE RLS
algorithms.
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3.5 Summary

In this chapter, we have developed a new block TDE structure for TR-STBC systems

which eliminates the separate decoder and also the need for explicit CIR estima-

tion at the receiver. Using simulation, we have shown that the block TDE requires

significantly less equalizer taps than the analogous FDE for SC FDE-STBC sys-

tems for short delay spread channels. The results show that TDE RLS algorithm

outperforms the analogous adaptive FDE algorithms in MSE dynamic convergence

behavior and SER steady-state performance. Using the increased flexibility of the

block TDE, we have also developed a new frame structure which allows the system

to perform better in fast time-varying channels.

Finally, we also analyzed the computational complexity of the TDE and FDE

RLS algorithms. We show that the TDE system has a higher complexity than

the FDE system. In summary, the TDE adaptive algorithm has better system

performance but at the cost of increased complexity compared to the FDE adaptive

system.
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Chapter 4

Adaptive Equalization in

STBC-Based Relaying Systems

A time domain adaptive equalization scheme for a time-reversal space-time block-

coding (TR-STBC) based transmitter diversity system was presented in the last

chapter. As explained in Chapter 2, cooperative diversity systems have been pro-

posed recently due to several potential advantages they may offer. In this chapter,

we extend the adaptive equalization scheme given in Chapter 3 to cooperative di-

versity systems.

Several block STBC structures for frequency selective fading channels, including

TR-STBC [25], single-carrier frequency-domain equalization for STBC (SC FDE-

STBC) [26] and orthogonal frequency division multiplexing (OFDM) for STBC

[27], have been proposed. In these schemes, the decoding and equalization of the

STBC transmissions require explicit estimation of the CIR at the receiver. Compar-

isons of these non-adaptive equalization schemes for STBC systems can be found

in [56, 57, 58] and [29, 59] for non-distributed and distributed STBC systems, re-

spectively. These studies show that, due to their increased sensitivity to frequency

errors as well as their inability to exploit the multipath diversity offered by the fre-

quency selectivity of the channel, OFDM-STBC systems perform poorly compared

to TR-STBC and SC FDE-STBC systems for both distributed and non-distributed

59
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transceivers.1

Given the previous research results, the purpose of this chapter is to develop

both time- and frequency-domain adaptive combined decoding/equalization schemes

for relay-assisted TR-STBC transmission systems. In this chapter we derive both

time- and frequency-domain adaptive combined decoding/equalization schemes for

an amplify-and-forward relay network based on Protocols I and III proposed by

Nabar et al. [1]. The chapter also includes an extensive Monte Carlo simulation

study and complexity analysis of both the time- and frequency-domain adaptive

combined decoding/equalization schemes.

4.1 Protocols and Transmission Procedures

Figure 4.1 shows the relay network topology used in this chapter. It is assumed

that the source (S), relay (R), and destination (D) terminals are all equipped with

a single antenna, and, to multiplex the various signals in the network, the well-

known Protocols I and III proposed by Nabar et al. [1] are implemented. As a

shorthand, these protocols are denoted by ‘P1’ and ‘P3’. For P1, during the first

time slot of each block, source S transmits information to relay R and destination

D. During the second time slot of the block, both S and R transmit information to

D. P3 is identical to P1 except that D chooses not to receive during the first time

slot. These protocols are summarized in Table 4.1. Note that for sake of analysis

it is assumed that the two signals arriving at D from S and R during the second

time slot are perfectly synchronized, which can be difficult to achieve in practical

systems.2

We also assume that the relay terminal assists in the communication with the

destination terminal using amplify-and-forward (AF) mode. In this mode, with-

1Note that these studies assume perfect timing synchronization. If more realistic imperfect syn-
chronization is considered, the performance advantages of TR-STBC and SC FDE-STBC systems
over OFDM-STBC systems could decrease.

2In [60, 61] researchers have considered modifications of cooperative STBC decoding techniques
for the case of imperfect synchronization, which could be applied to the techniques presented here.
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Table 4.1: Protocols I and III

Time Slot Protocol I Protocol III
1 S→R, S→D S→R
2 S→D, R→D S→D, R→D

 

 

S 

R 

D 

h1 

h2 

h3 

Figure 4.1: Relay network topology.

out decoding or demodulation the relay terminal buffers, amplifies and retransmits

blocks of received observations corresponding to the signal from the source terminal.

These operations can be implemented easily using a codec, some DRAM and an am-

plifier. Further it is assumed that the relay terminal has the capability of removing

or adding zero-padding (ZP) or a cyclic prefix (CP), depending on the type of STBC

method used in the transmission, which again requires synchronization between R

and S.

Let the CIRs for the source-to-relay (S→R), source-to-destination (S→D), and

relay-to-destination (R→D) links for the k-th transmission block be given by

h
(k)
1 = [h

(k)
1 (0), ..., h

(k)
1 (L1)]

T ,

h
(k)
2 = [h

(k)
2 (0), ..., h

(k)
2 (L2)]

T ,

h
(k)
3 = [h

(k)
3 (0), ..., h

(k)
3 (L3)]

T , (4.1)

respectively, where L1, L2, and L3 denote the corresponding channel memory lengths.

In [25], Lindskog and Paulraj introduced the TR-STBC scheme as an extension

of Alamouti’s method for frequency selective fading channels. In this chapter, we

generalize the TR-STBC scheme for a distributed single-relay network. To per-

form distributed TR-STBC encoding, data symbols are transmitted by S in blocks.

During Time slot 1 of the k-th transmitted block, where k is even, S transmits N
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Figure 4.2: Source terminal transmission block format.

symbols

x
(k)
1 = [x

(k)
1 (0), ..., x

(k)
1 (N − 1)]T (4.2)

and during Time slot 2 of the k-th transmitted block, S transmits another N symbols

x
(k)
2 = [x

(k)
2 (0), ..., x

(k)
2 (N − 1)]T . (4.3)

During Time slot 1 of the k+1-th transmission block, x
(k)
2 is time reversed, complex

conjugated, and negated to create

x
(k+1)
1 = −x̃

∗(k)
2 = [−x

∗(k)
2 (N − 1), ...,−x

∗(k)
2 (0)]T (4.4)

which is transmitted by S, and finally x
(k)
1 is time reversed and complex conjugated

to create

x
(k+1)
2 = x̃

∗(k)
1 = [x

∗(k)
1 (N − 1), ..., x

∗(k)
1 (0)]T (4.5)

which is transmitted by S during Time slot 2 of the k+1-th transmission block. After

each N symbols, zero-padding (ZP) of length V = max(L1 + L3, L2) is inserted to

overcome the inter-block interference. The transmission procedure at S is depicted

in Fig. 4.2. Here, a ZP-only scheme is used as it can be used for both the time-domain

equalizer (TDE) [62] and the frequency-domain equalizer (FDE) [58]. Compared to

the traditional CP method for FDE [26], the ZP scheme yields slightly more receiver

complexity due to an increase in the discrete Fourier transform (DFT) size by the

length of the ZP. On the other hand, this ZP scheme requires less transmission

power [63].



Chapter 4. Adaptive Equalization in STBC-Based Relaying Systems 63

4.2 Distributed TR-STBC Time-Domain MMSE

Receivers

In this section we describe the time-domain distributed TR-STBC decoder and

the corresponding MMSE equalizer for P3. Then, the MMSE receiver for P1 is

derived by combining the P3 MMSE equalizer with an equalizer based only on the

observations received during Time slot 1 (TS1 Equalizer). For P1, two options

(optimal and suboptimal) are presented for combining the P3 MMSE equalizer with

the TS1 Equalizer.

4.2.1 Protocol III MMSE Receiver

Consider the source terminal transmission block shown in Fig. 4.2. The received

signal at R during Time slot 1 of the k-th transmitted block is

y
(k)
Rext =

√
ESR H

(k)
1ext x

(k)
1 + n

(k)
Rext (4.6)

where ESR is the average energy available at R, taking into account the path loss and

shadowing effects over the S→R link, n
(k)
Rext is an additive white complex Gaussian

noise vector with each component having zero-mean and variance σ2
nR, and H

(k)
1ext

is the channel convolution matrix for the S→R link. Matrix H
(k)
1ext has dimension

(N + V )×N and the form

H
(k)
1ext =




h
(k)
1ext 0 . . . 0

0 h
(k)
1ext . . . 0

...
...

. . .
...

0 0 . . . h
(k)
1ext




(4.7)

where h
(k)
1ext = [(h

(k)
1 )T ,01×(V−L1)]

T . The relay terminal first removes the last V −L1

noise-only terms in y
(k)
Rext. Then it scales each entry of the resulting vector by a

factor
√

ESR + σ2
nR to give an average unit energy.

The truncated and scaled received signal y
(k)
R can now be written as

y
(k)
R =

√
ESR

ESR + σ2
nR

H
(k)
1 x

(k)
1 +

1√
ESR + σ2

nR

n
(k)
R (4.8)
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Figure 4.3: Relay terminal transmission block format for TDE.

where n
(k)
R is the truncated noise vector, and matrix H

(k)
1 has the same form as

(4.7) with h
(k)
1ext replaced by h

(k)
1 and has dimension (N + L1) × N . The relay ter-

minal transmits the signal y
(k)
R during Time slot 2. This simple scaling without any

decoding is known as amplify-and-forward processing and is depicted in Fig. 4.3. In

the figure y
(k)
R and y

(k+1)
R represent the truncated and scaled relay terminal received

vectors during blocks k and k + 1, respectively. As seen from the figure, there is no

transmission from R during Time slot 1, and a ZP of length V − L1 is inserted by

the relay terminal.

During Time slot 2, the destination terminal receives signals from both the relay

and source terminals. The received signal at D for the k-th transmitted block is

given by

y
(k)
Dt2 =

√
ERD H

(k)
3 y

(k)
R +

√
ESD H

(k)
2 x

(k)
2 + n

(k)
Dt2 (4.9)

where ERD and ESD are the average energies available at D, taking into account

the different path loss and shadowing effects over the R→D and S→D links, and

n
(k)
Dt2 is the additive white complex Gaussian noise vector with each entry having

zero-mean and variance σ2
nD. Finally, H

(k)
2 and H

(k)
3 are the channel convolution

matrices for the S→D and R→D links. Again, matrices H
(k)
2 and H

(k)
3 have the

same form as (4.7) with h
(k)
1ext replaced by h

(k)
2ext = [(h

(k)
2 )T ,01×(V−L2)]

T and h
(k)
3ext =

[(h
(k)
3 )T ,01×(V−L1−L3)]

T , respectively, yielding matrices with dimensions (N+V )×N

and (N + V ) × (N + L1). Combining and scaling (4.6) and (4.9), and by defining

γ1 =
√

ERDESR

ESR+σ2
nR

, γ2 =
√

ESD, and γ3 =
√

ERD

ESR+σ2
nR

, we have

y
(k)
Dt2 = γ1H

(k)
3 H

(k)
1 x

(k)
1 + γ2H

(k)
2 x

(k)
2 + n

(k)
Dt2 + γ3H

(k)
3 n

(k)
R . (4.10)

Assuming that the channels’ coefficients remain constant over two consecutive
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blocks, the received signal at D during Time slot 2 of the k+1-th transmitted block

is given by

y
(k+1)
Dt2 = −γ1H

(k)
3 H

(k)
1 x̃

∗(k)
2 + γ2H

(k)
2 x̃

∗(k)
1 + n

(k+1)
Dt2 + γ3H

(k)
3 n

(k+1)
R . (4.11)

Now using the encoding rule given in (4.4) and (4.5) and stacking the observation

vectors, gives

yDt2 ,


 y

(k)
Dt2

ỹ
∗(k+1)
Dt2




=


 γ1H

(k)
3 H

(k)
1 γ2H

(k)
2

γ2H̃
∗(k)

2 −γ1H̃
∗(k)

3 H̃
∗(k)

1





 x

(k)
1

x
(k)
2


 +


 n

(k)
Dt2 + γ3H

(k)
3 n

(k)
R

ñ
∗(k+1)
Dt2 + γ3H̃

∗(k)

3 ñ
∗(k+1)
R




, Hx + n (4.12)

where Ã
∗

denotes the complex conjugation and time reversal of matrix A.

Matrix H has the property that the transmitted blocks x
(k)
1 and x

(k)
2 become

decoupled by multiplying both sides of (4.12) by the matrix

Hd =


 γ1H̃

∗(k)

3d H̃
∗(k)

1d γ2H
(k)
2d

γ2H̃
∗(k)

2d −γ1H
(k)
3d H

(k)
1d


 (4.13)

where H
(k)
1d has the same form as H

(k)
1 but with dimensions (N +V +L1)×(N +V ),

H
(k)
2d has the same form as H

(k)
2 but with dimensions (N +2V )× (N +V ), and H

(k)
3d

has the same form as H
(k)
3 but with dimensions (N + 2V ) × (N + V + L1). Thus,

the resulting output from the TR-STBC decoder is

z =


 z

(k)
1

z
(k)
2


 , Hd yDt2

=


 G(k) 0

0 G(k)





 x

(k)
1

x
(k)
2


 + Hd


 n

(k)
Dt2 + γ3H

(k)
3 n

(k)
R

ñ
∗(k+1)
Dt2 + γ3H̃

∗(k)

3 ñ
∗(k+1)
R


 (4.14)

where

G(k) = γ2
1 H̃

∗(k)

3d H̃
∗(k)

1d H
(k)
3 H

(k)
1 + γ2

2 H
(k)
2d H̃

∗(k)

2 . (4.15)

Equation (4.14) demonstrates that the decoder outputs z1 and z2 are decoupled

in terms of x1 and x2. We also see that the decoupled signals z1 and z2 have equal
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channel gain matrices and can show that the statistics of the noise terms in z1 and

z2 are identical and uncorrelated, leading to independence since they are jointly

Gaussian. Therefore, the same MMSE tap weights can be applied to both blocks

z1 and z2 to remove the inter-symbol interference (ISI). Thus, we consider a block

of only one decoder’s outputs, z1 = [z1(0), . . . , z1(N + 2V − 1)]T , when deriving the

MMSE solution for the equalizer taps.

We assume that the q-tap equalizer is symbol spaced with tap weight vector w.

And for convenience, we let q be an odd integer. The output of the block equalizer

is written x̂1 = Z1 w, where Z1 has dimensions (N + 2V + q− 1)× q and the form

shown in (4.7) with h
(k)
1ext replaced by z1. The estimation error at the output of the

equalizer is e1 = x1ext −Z1 w where x1ext =
[
01×[(2V +q−1)/2],x

T
1 ,01×[(2V +q−1)/2]

]T
.

It can be shown that the optimum MMSE equalizer tap weight vector is then

wo =
[
E{Z†

1 Z1}
]−1

E{Z†
1 x1ext} . (4.16)

It can also be shown that (q× q)-dimensional autocorrelation matrix E{Z†
1 Z1} has

the form

E{Z†
1 Z1} =




Tr0(Rz) Tr1(Rz) . . . Tr(q−1)(Rz)

Tr−1(Rz) Tr0(Rz) . . . Tr(q−2)(Rz)
...

...
. . .

...

Tr−(q−1)(Rz) Tr−(q−2)(Rz) . . . Tr0(Rz)




(4.17)

where the vector autocorrelation matrix

Rz = E{z1 z†1}
= σ2

xGG† + σ2
nDγ2

1H̃
∗
3dH̃

∗
1d(H̃

∗
3dH̃

∗
1d)

† + σ2
nDγ2

2H2dH
H
2d

+ σ2
nRγ2

3γ
2
2H2dH̃

∗
3(H2dH̃

∗
3)
† + σ2

nRγ2
3γ

2
1H̃

∗
3dH̃

∗
1dH3(H̃

∗
3dH̃

∗
1dH3)

†, (4.18)

Trj(A) is the j-th off-diagonal trace of matrix A and the (k) superscripts are

dropped from the notation. Similarly, by defining q-dimensional cross-correlation

vector p
4
= E{Z†

1 x1ext}, it can be shown that

p = [Tr(−V−ν)(G), Tr(−V−ν+1)(G), . . . , Tr(−V +ν)(G)]† (4.19)
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where ν = (q − 1)/2. The optimum MMSE equalizer tap weights can be obtained

by substituting (4.17) and (4.19) into (4.16).

4.2.2 Protocol I MMSE Receiver

In this section we propose optimal and suboptimal MMSE receivers for P1 by com-

bining the P3 MMSE receiver with the TS1 equalizer. In the optimal case, the taps

of the P3 MMSE equalizer and the TS1 equalizer are jointly optimized using the

MMSE criterion, and in the suboptimal case, the taps of the P3 MMSE equalizer

and the TS1 equalizer are independently derived and combined using the MSE at

the output of the equalizers.

Optimal Protocol I MMSE Receiver

The difference between protocols P1 and P3 is that for P1 the destination terminal

utilizes the additional observations of the direct S→D link during Time slot 1.

Assuming that the channel coefficients remain constant over two consecutive blocks,

the received signals at D during Time slot 1 of the k-th and k + 1-th blocks are:

y
(k)
Dt1 = γ2 H

(k)
2 x

(k)
1 + n

(k)
Dt1

y
(k+1)
Dt1 = − γ2 H

(k)
2 x̃

∗(k)
2 + n

(k+1)
Dt1 . (4.20)

The information received during Time slot 1 does not require an orthogonalizing

decoder, as the symbols x1 and x2 are not coupled. However, the TR-STBC decoder

is again required for the Time slot 2 observations. A block diagram of the MMSE

equalizer for P1 is shown in Fig. 4.4.

As before, it is assumed the Time slot 2 (TS2) equalizer shown in Fig. 4.4 has

q-length tap weight vectors w01 and w02, where q is an odd integer. Similarly, for

the Time slot 1 (TS1) equalizer, the tap weight vectors w11 and w12 have length

q2 = V + l, where l is an odd integer for convenience.

First, consider the equalizer output estimates of the symbols x1,

x̂1 = Z01 w01 + Y 11 w11 (4.21)



Chapter 4. Adaptive Equalization in STBC-Based Relaying Systems 68
 

 
 

 

 

 

STBC 

decoder

 

 

 

 

 

 

 

 

 

ZP 

ZP 

 

 

 

TS2 equalizer 

TS1 equalizer 

 

 

 
- + 

+ 

Figure 4.4: Jointly optimized (optimal) MMSE equalizer for P1.

where Z01 has dimension (N +2V +q−1)×q and the form shown in (4.7) with h
(k)
1ext

replaced by z1 and Y 11 has dimension (N + V + q + q2 − l − 1)× q2 and the form

shown in (4.7) with h
(k)
1ext replaced by y11 =

[
01×[(q−l)/2], (y

(k)
Dt1)

T ,01×[(q−l)/2]

]T

. The

received signal y
(k)
Dt1 is zero-padded both in front and behind with (q− 1)/2 zeros to

align the output of the TS1 equalizer with that of the TS2 one. The output error of

the equalizer is e1 = x1ext − x̂1, where x1ext =
[
01×[(2V +q−1)/2],x

T
1 ,01×[(2V +q−1)/2]

]T
.

Defining CZZ = E{Z†
01 Z01}, CY Y = E{Y †

11 Y 11}, CZY = E{Z†
01 Y 11}, cZx =

E{Z†
01 x1ext}, and cY x = E{Y †

11 x1ext}, the optimum MMSE equalizer tap weight

vector is 
 w01

w11


 =


 CZZ CZY

C†
ZY CY Y



−1 

 cZx

cY x


 . (4.22)

Clearly, CZZ and cZx are given in (4.17) and (4.19), respectively, and q2×q2 matrix

CY Y has the same form as (4.17) but with q and Rz replaced by q2 and Ry =

E{y(k)
Dt1 (y

(k)
Dt1)

†} = σ2
x γ2

2 H2 H†
2 +σ2

nD IN+V , respectively. In addition, CZY has the

form

CZY =




Trm(Ryz) Tr(m+1)(Ryz) . . . Tr(m+q2−1)(Ryz)

Tr(m−1)(Ryz) Trm(Ryz) . . . Tr(m+q2−2)(Ryz)
...

...
. . .

...

Tr(m−q+1)(Ryz) Tr(m−q+2)(Ryz) . . . Tr(m+q2−q)(Ryz)




(4.23)
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Figure 4.5: Sub-optimal MMSE equalizer for P1.

where m = (q − l)/2, the vector cross-correlation matrix Ryz = E{y(k)
Dt1 z†1} =

σ2
x γ2 H2 G†, and finally, cY x = [01×[(l−1)/2], (h̃

∗(k)

2ext)
T ,01×[(l−1)/2]]

T .

Similarly, the equalizer output estimating the symbols x2 is

x̂2 = Z02 w02 − Ỹ
∗
12 w̃∗

12 (4.24)

where Z02 has the same size and the form as Z01 in (4.21) with z1 replaced by z2

and Y 12 has the same size and the form as Y 11 in (4.21) with y
(k)
Dt1 replaced by

y
(k+1)
Dt1 . Analogously, it can be shown that the optimum MMSE equalizer tap weight

vector for estimating the symbols x2 is


 w02

w̃∗
12


 =


 CZZ C̃

∗
ZY

(C̃
∗
ZY )† C̃

∗
Y Y



−1 

 cZx

c̃∗Y x


 . (4.25)

Sub-Optimal Protocol I MMSE Receiver

The suboptimal P1 MMSE equalizer is derived here using independently-optimized

P3 MMSE and TS1 equalizers. The block diagram of the suboptimal P1 equal-

izer is shown in Fig. 4.5. In the figure, the ‘TS2 Equalizer’ is the P3 STBC MMSE

decoder/equalizer given in Sec. 4.2.1 and the ‘TS1 Equalizer’ is the non-STBC equal-

izer that only depends on the information received at the destination during TS1

given by (4.20).
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To derive the MMSE solution for the ‘TS1 Equalizer’, we define the tap weight

vector w1 of length q2 = V + l, where l is an odd integer for convenience. First, we

consider the equalizer output estimating the symbols x1,

x̂1 = Y 11 w1 (4.26)

where Y 11 is given in (4.21). The optimum MMSE equalizer tap weight vector is

then

w1 = C−1
Y Y cY x (4.27)

where CY Y and cY x are given in (4.22). The two equations given in (4.20) have

the same channel gain and noise statistics. Hence, the same optimal equalizer tap

weight vector, w1, can be used to estimate the symbols x2 as

x̂2 = −Ỹ
∗
12 w̃∗

1 (4.28)

where Y 12 is given in (4.24).

To reduce the computational complexity of the equalizer, we propose a subop-

timal P1 MMSE equalizer which combines the ‘TS1 Equalizer’ and ‘TS2 Equalizer’

outputs scaled by factors f2 and f1, respectively. The factors f2 and f1 depend

on the average sliced MSE of the equalizer outputs. To calculate these factors, we

define x̂TS1 and x̂TS2 as the ‘TS1’ and ‘TS2’ equalizer outputs and x̌TS1 and x̌TS2

as the corresponding slicer outputs. Then the average sliced MSEs a1MSE and a2MSE

of the ‘TS2 Equalizer’ and ‘TS1 Equalizer’ outputs can be estimated using

a1MSE =
1

2N
‖x̌TS2 − x̂TS2‖2,

a2MSE =
1

2N
‖x̌TS1 − x̂TS1‖2 . (4.29)

Finally, the scale factors are

f1 =
a1MSE

a1MSE + a2MSE

, f2 =
a2MSE

a1MSE + a2MSE

. (4.30)

By updating the ‘TS1’ and ‘TS2’ equalizer tap weights independently, this subop-

timal equalizer has reduced complexity relative to the optimal one. In Sec. 4.6, the

complexity versus performance tradeoff of the two P1 equalizers are discussed.
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4.3 Distributed TR-STBC Time-Domain Adap-

tive Receivers

Next, we develop adaptive receiver structures for both protocols P1 and P3 by ex-

ploiting the structure of the TR-STBC decoder. The adaptive algorithms eliminate

the need for explicit CIR estimation at the receiver and allow the receiver to track

a time-varying channel.

4.3.1 Protocol III Adaptive Receiver

By defining H
(k)
1D = γ1H

(k)
3d H

(k)
1d and letting H

(k)
2D = γ2H

(k)
2d , (4.13) can be written

as

Hd =


 H̃

∗(k)

1D H
(k)
2D

H̃
∗(k)

2D −H
(k)
1D


 . (4.31)

Using the property that the Wiener tap weight vector wo is the same for both

outputs z1 and z2, the equalizer outputs for the two streams can written as

 x̂1

x̂2


 =


 W 0

0 W





 z1

z2




=


 W H̃

∗(k)

1D W H
(k)
2D

W H̃
∗(k)

2D −W H
(k)
1D





 y

(k)
Dt2

ỹ
∗(k+1)
Dt2


 (4.32)

where the equalizer matrix W has dimension (N + 2V + q − 1) × (N + 2V ) and

has the form shown in (4.7) with h
(k)
1ext replaced by wo. Using the analysis of Sec.

4.2.1, it can be shown that the optimal tap weight vector wo has the conjugate

time-reversal symmetry property wo = w̃∗
o. Based on this property,


 x̂1

x̂2


 4

=


 Ã

∗
1 A2

Ã
∗
2 −A1





 y

(k)
Dt2

ỹ
∗(k+1)
Dt2


 (4.33)

where joint equalizer-channel matrixes A1 = W H
(k)
1D and A2 = W H

(k)
2D . Time

reversing and conjugating x̂2, we can write

 x̂1

˜̂x∗2


 =


 Ã

∗
1 y

(k)
Dt2 + A2 ỹ

∗(k+1)
Dt2

A2 ỹ
∗(k)
Dt2 − Ã

∗
1 y

(k+1)
Dt2


 . (4.34)
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If we define the combined equalizer and decoder vectors

w1 = γ1 conv(conv(h̃
∗
1, h̃

∗
3ext), w̃

∗
o) (4.35)

and

w2 = γ2 conv(wo,h2ext), (4.36)

both of length qa = q+V , the combined decoder and equalizer output can be written

as 
 x̂1

˜̂x∗2


 =


 Y (k) Ỹ

∗(k+1)

−Y (k+1) Ỹ
∗(k)





 w1

w2


 4

= UDt2 w(k) (4.37)

where matrix Y (i) has dimension (N +2V +q−1)× (q+V ) and has the form shown

in (4.7) with h
(k)
1ext replaced by y

(i)
Dt2. The equalizer tap weights w(k) are now isolated

in (4.37), and they can be easily adapted using block versions of, for example, the

well-known NLMS and RLS algorithms [44].

4.3.2 Protocol I Optimal Adaptive Receiver

Using the analysis of Sec. 4.2.2, it can be shown that the optimal tap weight vectors

of the optimal P1 MMSE equalizer satisfy w01 = w̃∗
02 and w11 = w12. Applying

these relations and using similar arguments used in deriving equations (4.31)–(4.37),

the optimal P1 MMSE equalizer output can be rewritten as

 x̂1

˜̂x∗2


 = UDt2


 w1p1

w2p1


 +


 Y 11

−Y 12


 w11

=


 UDt2

∣∣∣∣∣∣
Y 11

−Y 12







w1p1

w2p1

w11




4
= Uw(k) (4.38)

where combined equalizer and decoder vectors w1p1 = γ1 conv(conv(h̃
∗
1, h̃

∗
3ext), w01)

and w2p1 = γ2 conv(w01,h2ext) have length qa = q + V , and w11 is given in (4.22).

As in (4.37), the equalizer tap weights w(k) are isolated in (4.38), and traditional

block adaptive algorithms can be used to construct the adaptive P1 receiver.
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4.3.3 Protocol I Suboptimal Adaptive Receiver

The suboptimal P1 adaptive equalizer consists of independently adapting the ‘TS1’

and ‘TS2’ equalizers as in the case of the suboptimal P1 MMSE equalizer. The

‘TS2’ adaptive equalizer is just the same as the adaptive equalizer for P3 given in

Sec. 4.3.1. The ‘TS1’ adaptive equalizer can be easily put into block adaptive form

by considering the MMSE solutions given in (4.26) and (4.28). These two equations

can be combined and the output of the adaptive ‘TS1’ equalizer is then


 x̂1

˜̂x∗2


 =


 Y 11

−Y 12


 w1

4
= UDt1 w(k). (4.39)

To obtain the suboptimal P1 adaptive equalizer output, the ‘TS1’ and ‘TS2’ adap-

tive equalizer outputs are scaled and combined as explained for the suboptimal P1

MMSE equalizer in (4.29) and (4.30).

4.3.4 Block RLS Algorithms

To compare the performances of the adaptive receivers for P1 and P3, we have

derived three block versions of the RLS algorithm which are summarized in Tables

4.2 and 4.3. These versions use equations (4.37) for the P3 receiver, (4.38) for the

P1 optimal receiver, and (4.37) and (4.39) for the P1 suboptimal receiver. The

estimation error vector e(k) is

e(k) =


 x

(k)
1ext

x̃
∗(k)
2ext


−


 x̂

(k)
1

˜̂x∗(k)

2


 (4.40)

where x
(k)
`ext =

[
01×[(2V +q−1)/2], (x

(k)
` )T ,01×[(2V +q−1)/2]

]T

. Note also that in both block

RLS algorithms, the Matrix Inversion Lemma is not applied, as it increases the

dimensionality of the required matrix inversions. The adaptive receivers operate in

training mode for the training blocks within a frame and switch to decision directed

mode for the data blocks.
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Table 4.2: Block RLS Algorithm for Distributed TR-STBC Systems

Protocol III Protocol I Optimal

Initial conditions: Initial conditions:
w(0) = 02qa×1 w(0) = 0(2qa+q2)×1

Φ(0) = I2qa×2qa Φ(0) = I(2qa+q2)×(2qa+q2)

Update taps at each iteration using: Update taps at each iteration using:

Φ(k+2) = λΦ(k) + U †
Dt2 UDt2 Φ(k+2) = λΦ(k) + U †U

w(k+2) = w(k) + (Φ(k+2))−1 U †
Dt2 e(k) w(k+2) = w(k) + (Φ(k+2))−1 U †e(k)

where λ is small positive close to 1 where λ is small positive close to 1

Table 4.3: Block RLS Algorithm for P1 Sub-Optimal Distributed TR-STBC System

P1 Sub-Optimal
TS2 TS1
Initial conditions: Initial conditions:
w(0) = 02qa×1 w(0) = 0q2×1

Φ(0) = I2qa×2qa Φ(0) = Iq2×q2

Equalizer output: Equalizer output:
x̂TS2 = UDt2 w(k) x̂TS1 = UDt1 w(k)

Update taps at each iteration using: Update taps at each iteration using:

Φ(k+2) = λΦ(k) + U †
Dt2 UDt2 Φ(k+2) = λΦ(k) + U †

Dt1 UDt1

w(k+2) = w(k) + (Φ(k+2))−1 U †
Dt2 e(k) w(k+2) = w(k) + (Φ(k+2))−1 U †

Dt1 e(k)

where λ is small positive close to 1 where λ is small positive close to 1
Combined output:

x̂ = f1x̂TS2 + f2x̂TS1
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4.4 Distributed TR-STBC Frequency-Domain

MMSE Receivers

In the context of the previous research into SC FDE-STBC systems [26, 28, 29, 22], in

this section we derive frequency-domain MMSE equalization schemes for distributed

TR-STBC systems to compare with the time-domain MMSE equalization schemes

derived in Sec. 4.2.

4.4.1 Protocol III MMSE Receiver

Considering the same distributed TR-STBC transmission scheme described in Sec.

4.1, the received signal at R during Time slot 1 of the k-th transmitted block is

y
(k)
Rext =

√
ESR H

(k)
1 x

(k)
1ext + n

(k)
Rext (4.41)

where H
(k)
1 is a (N +V )× (N +V ) circulant channel matrix for the S→R link with

first column of the form [(h
(k)
1 )T ,01×(N+V−L1−1)]

T and x
(k)
1ext = [(x

(k)
1 )T ,01×V ]T .

The relay terminal first removes the last V − L1 noise-only terms in y
(k)
Rext and

scales each entry of the resulting vector by a factor
√

ESR + σ2
nR to give an average

unit energy. Then a ZP of length V − L1 is appended. The modified and scaled

observations y
(k)
RF can now be written as

y
(k)
RF =

√
ESR

ESR + σ2
nR

H
(k)
1 x

(k)
1ext +

1√
ESR + σ2

nR

n
(k)
RF (4.42)

where n
(k)
RF = [(n

(k)
R )T ,01×(V−L1)]

T with n
(k)
R containing the first N + V − L1 − 1

samples of n
(k)
Rext. The relay terminal transmits y

(k)
RF during Time slot 2 as depicted

in Fig. 4.6. In the figure y
(k)
RF and y

(k+1)
RF represent the modified and scaled relay

observation vectors during blocks k and k +1, respectively. As seen from the figure,

there is no transmission from R during Time slot 1, and a ZP of length V − L1

is inserted by the relay terminal. Note that Fig. 4.6 is the same as Fig. 4.3 only

differing in notation.

During Time slot 2, the destination terminal receives signals from both the relay

and source terminals. The received signal at D for the k-th transmitted block is
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Figure 4.6: Relay terminal transmission block format for FDE.

given by

y
(k)
Dt2 =

√
ERD H

(k)
3 y

(k)
RF +

√
ESD H

(k)
2 x

(k)
2ext + n

(k)
Dt2 (4.43)

where H
(k)
2 is a (N + V ) × (N + V ) circulant channel matrix for the S→D link

with the first column of the form [(h
(k)
2 )T ,01×(N+V−L2−1)]

T , H
(k)
3 is a (N + V ) ×

(N + V ) circulant channel matrix for the R→D link with the first column of the

form [(h
(k)
3 )T ,01×(N+V−L3−1)]

T , and finally x
(k)
2ext = [(x

(k)
2 )T ,01×V ]T . Combining and

scaling (4.42) and (4.43), we find

y
(k)
Dt2 =γ1H

(k)
3 H

(k)
1 x

(k)
1ext + γ2H

(k)
2 x

(k)
2ext + n

(k)
Dt2 + γ3H

(k)
3 n

(k)
RF . (4.44)

Assuming that the channels’ coefficients remain constant over two consecutive

blocks, and defining a permutation matrix P as in [58],

P =


 EN 0N×V

0V×N EV


 (4.45)

the received signal at D during Time slot 2 of the k + 1-th transmitted block is

given by

y
(k+1)
Dt2 = − γ1H

(k)
3 H

(k)
1 Px

∗(k)
2ext + γ2H

(k)
2 Px

∗(k)
1ext + n

(k+1)
Dt2 + γ3H

(k)
3 n

(k+1)
RF . (4.46)

Left-multiplying (4.46) by P , conjugating, and using the property from [58] that

PH
(k)
` P = H

T (k)
` , we have

Py
∗(k+1)
Dt2 = − γ1(H

(k)
3 )†(H(k)

1 )†x(k)
2ext + γ2(H

(k)
2 )†x(k)

1ext

+ Pn
∗(k+1)
Dt2 + γ3(H

(k)
3 )†Pn

∗(k+1)
RF . (4.47)

Now taking the discrete Fourier transform (DFT) of (4.44) and (4.47) and stacking
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the resulting vectors, we can write

y
Dt2

4
=


 Qy

(k)
Dt2

QPy
∗(k+1)
Dt2


 4

=


 y(k)

Dt2

y∗(k+1)
Dt2


 4

= Λx + n

=


 γ1Λ

(k)
3 Λ

(k)
1 γ2Λ

(k)
2

γ2Λ
∗(k)
2 −γ1Λ

∗(k)
3 Λ

∗(k)
1





 x

(k)
1

x
(k)
2


 +


 n

(k)
Dt2 + γ3Λ

(k)
3 n

(k)
R

n
∗(k+1)
Dt2 + γ3Λ

∗(k)
3 n

∗(k+1)
R




(4.48)

where Q is the orthonormal DFT matrix, diagonal matrix Λ
(j)
i = QH

(j)
i Q∗ with

(n, n)-th entry equal to the n-th DFT coefficient of the CIR h
(j)
i , x

(k)
i = Qx

(k)
iext,

n
(j)
i = Qn

(j)
i , and finally n

∗(j)
i = QPn

∗(j)
i .

Matrix Λ has the property that the transmitted blocks x
(k)
1 and x

(k)
2 become

decoupled by multiplying both sides of the equation (4.48) by matrix Λ†. Thus, the

resulting output from the decoder is

ψ
4
=


 ψ(k)

ψ(k+1)


 = Λ†y

Dt2
= Λ†Λx + Λ†n

=


 Λ̃ 0

0 Λ̃





 x

(k)
1

x
(k)
2


 + Λ†


 n

(k)
Dt2 + γ3Λ

(k)
3 n

(k)
R

n
∗(k+1)
Dt2 + γ3Λ

∗(k)
3 n

∗(k+1)
R


 (4.49)

where

Λ̃
4
= γ2

1Λ
(k)
3 Λ

∗(k)
3 Λ

(k)
1 Λ

∗(k)
1 + γ2

2Λ
(k)
2 Λ

∗(k)
2 . (4.50)

Along with being decoupled in terms of the symbols x
(k)
1 and x

(k)
2 , we see that

the decoder outputs ψ(k) and ψ(k+1) have equal channel gain matrices and can

show for each protocol that the statistics of the noise terms in ψ(k) and ψ(k+1) are

identical and uncorrelated, leading to independence since they are jointly Gaussian.

Therefore, the same MMSE tap weights can be applied to both blocks ψ(k) and

ψ(k+1) to remove the ISI. Thus, a block of only one decoder’s outputs, ψ(k) is

considered when deriving the MMSE solution for the equalizer taps.

As we are performing FDE, the distributed TR-STBC MMSE-FDE equalizer

must have N + V taps, equal to the length of the block. Minimizing the MSE
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J = E{‖x(k)
1 −Wψ(k)‖2} as a function of the (N + V )× (N + V ) diagonal matrix

W , it can be shown that the optimum distributed TR-STBC MMSE-FDE equalizer

tap weight vector is

W 0 = σ2
x(σ

2
xΛ̃ + σ2

nDIN + σ2
nRγ2

3Λ
(k)
3 Λ

∗(k)
3 )−1 . (4.51)

In deriving the solution (4.51), we use the fact that after the orthonormal transfor-

mation by Q, the noise vectors, n
(j)
i , and symbol vectors, x

(k)
i , remain white with

correlation matrices Rni = σ2
niI(N+V ) and Rx = σ2

xI(N+V ), respectively. Thus, the

outputs of the distributed TR-STBC MMSE-FDE equalizer for both blocks are

x̂
(k)
1 = W 0ψ

(k) and x̂
(k)
2 = W 0ψ

(k+1). (4.52)

4.4.2 Protocol I MMSE FDE Receivers

In this section we propose analogous optimal and suboptimal frequency-domain

MMSE receivers for P1 by combining the frequency-domain P3 MMSE receiver

with a frequency-domain version of the TS1 equalizer. In the optimal case, the taps

of the P3 equalizer and the TS1 equalizer are jointly optimized using the MMSE

criterion, and in the suboptimal case, the taps of the P3 equalizer and the TS1

equalizer are independently derived and linearly combined at the outputs of the

equalizers.

Optimal Protocol I MMSE FDE Receiver

As in the time-domain case, assuming that the channel coefficients remain constant

over two consecutive blocks, the received signals at D during Time slot 1 of the k-th

and k + 1-th blocks are

y
(k)
Dt1 = γ2 H

(k)
2 x

(k)
1ext + n

(k)
Dt1

y
(k+1)
Dt1 = − γ2 H

(k)
2 Px

∗(k)
1ext + n

(k+1)
Dt1 (4.53)

where H
(k)
2 is a (N + V ) × (N + V ) circulant channel matrix for the S→D link

with first column of the form [(h
(k)
2 )T ,01×(N+V−L2−1)]

T and n
(j)
Dt1 is the additive
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Figure 4.7: Optimal frequency domain MMSE equalizer for P1.

white complex Gaussian noise vector. The information received during Time slot

1 does not require an orthogonalizing decoder, as the symbols x1ext and x2ext are

not coupled. However, the TR-STBC frequency domain decoder is again required

for the Time slot 2 observations. A block diagram of the optimal frequency-domain

MMSE equalizer for P1 is shown in Fig. 4.7.

We assume that the TS2 equalizer shown in Fig. 4.7 requires (N +V )× (N +V )

diagonal tap weight matrices W 01 and W 02. Similarly, the TS1 equalizer also

requires (N + V ) × (N + V ) diagonal tap weight matrices W 11 and W 12. First,

consider the equalizer output estimates of the symbols x
(k)
1 ,

x̂
(k)
1 = W 01ψ

(k) + W 11Qy
(k)
Dt1

4
= W 01ψ

(k) + W 11y
(k)

Dt1
. (4.54)

After minimizing the MSE based on the output error vector, e1 = x
(k)
1 − x̂

(k)
1 , the

optimum MMSE equalizer tap weight vector is then

[
W 01 W 11

]
=

[
RXỸ RXY

]

 RỸ Ỹ RỸ Y

R†
Ỹ Y

RY Y



−1

(4.55)
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with correlation matrices

RỸ Ỹ

4
= σ2

xΛ̃Λ̃ + σ2
nDΛ̃ + σ2

nRγ2
3Λ3Λ

∗
3Λ̃

RỸ Y

4
= σ2

xγ2Λ̃Λ∗
2

RY Y
4
= σ2

xγ
2
2Λ2Λ

∗
2 + σ2

nDI(N+V )

RXỸ

4
= σ2

xΛ̃

RXY
4
= σ2

xγ2Λ
∗
2 . (4.56)

Again, we have used the property that the orthonormally-transformed noise vectors,

n
(j)
i , and signal vectors, x

(k)
i , remain white. Analogously, by setting

x̂
(k)
2 = W 02ψ

(k+1) −W 12QPy
∗(k+1)
Dt1

4
= W 02ψ

(k+1) −W 12y
∗(k+1)

Dt1
(4.57)

the optimum MMSE equalizer tap weight vector for estimating the symbols x
(k)
2 is

[
W 02 W 12

]
=

[
RXỸ R†

XY

]

 RỸ Ỹ R†

Ỹ Y

RỸ Y RY Y



−1

. (4.58)

Sub-Optimal Protocol I MMSE FDE Receiver

The suboptimal frequency-domain P1 MMSE equalizer is derived here by using

the independently-optimized frequency-domain P3 MMSE and TS1 equalizers. The

block diagram for the suboptimal P1 equalizer is again shown in Fig. 4.5. In the

figure, the ‘TS2 Equalizer’ is the frequency-domain P3 STBC MMSE decoder and

equalizer given in Sec. 4.4.1 and the ‘TS1 Equalizer’ is the frequency-domain TS1

equalizer described below.

To derive the MMSE solution for the ‘TS1 Equalizer’, we consider a (N + V )×
(N + V ) diagonal tap weight matrix W 1. First, we examine the equalizer output

estimates of the symbols x
(k)
1 ,

x̂
(k)
1 = W 1Qy

(k)
Dt1

4
= W 1y

(k)

Dt1
. (4.59)

The optimum MMSE equalizer tap weight matrix W 1 is

W 1 = RXY R−1
Y Y (4.60)
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where RXY and RY Y are given in (4.56). Because the two equations given in (4.53)

have the same channel gain and noise statistics, the same tap weight matrix W 1

can be used to estimate the symbols x
(k)
2 with

x̂
(k)
2 = −W ∗

1QPy
∗(k+1)
Dt1

4
= −W ∗

1 y∗(k+1)

Dt1
. (4.61)

The suboptimal frequency-domain P1 MMSE equalizer combines the frequency-

domain ‘TS1 Equalizer’ and ‘TS2 Equalizer’ outputs after scaling by the factors f2

and f1, as shown before in (4.29) and (4.30). Again, the suboptimal P1 MMSE

equalizer has low complexity compared to the optimal equalizer.

4.5 Distributed TR-STBC Frequency-Domain

Adaptive Receivers

In this section we describe frequency-domain adaptive receiver structures for both

protocols P1 and P3 which exploit the structure of the TR-STBC decoder. The

adaptive algorithms once again eliminate the need for explicit CIR estimation at

the receiver and allow the receiver to track a time-varying channel.

4.5.1 Protocol III Frequency-Domain Adaptive Receiver

By defining Λ
(k)
1D

4
= γ1Λ

(k)
3 Λ

(k)
1 and Λ

(k)
2D

4
= γ2Λ

(k)
2 , decoder matrix Λ† in (4.49) can

be rewritten as

Λ† =


 Λ

∗(k)
1D Λ

(k)
2D

Λ
∗(k)
2D −Λ

(k)
1D


 . (4.62)

From equation (4.51), we see that the TR-STBC MMSE FDE tap weight matrix,

W 0, is real and diagonal, and Λ
(k)
1D and Λ

(k)
2D are diagonal matrices. Using these

properties, the TR-STBC MMSE FDE outputs for the two streams can be written
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as


 x̂

(k)
1

x̂
(k)
2


 =


 W 0 0

0 W 0





 ψ(k)

ψ(k+1)




=


 W 0 Λ

∗(k)
1D W 0 Λ

(k)
2D

W 0 Λ
∗(k)
2D −W 0 Λ

(k)
1D





 y(k)

Dt2

y∗(k+1)
Dt2




4
=


 A1 A2

A∗
2 −A∗

1





 y(k)

Dt2

y∗(k+1)
Dt2


 (4.63)

where A1 = W 0 Λ
∗(k)
1D and A2 = W 0 Λ

(k)
2D are diagonal matrices. Thus, equation

(4.63) can be rewritten as


 x̂

(k)
1

x̂
∗(k)
2


 =


 diag(y(k)

Dt2
) diag(y∗(k+1)

Dt2
)

−diag(y(k+1)
Dt2

) diag(y∗(k)
Dt2

)





 w1F

w2F




4
= UDt2F w(k) (4.64)

where diag(c) is a diagonal matrix containing the vector c as its diagonal elements,

and w1F and w2F are the vectors containing the diagonal elements of A1 and A2,

respectively. Because now the equalizer tap weights w(k) are isolated in (4.64), they

can be easily adapted using block versions of the NLMS and RLS algorithms [44].

4.5.2 Protocol I Optimal Frequency-Domain Adaptive Re-

ceiver

Using the analysis of Sec. 4.4.2, it can also be shown that the optimal tap weight

vectors of the optimal frequency-domain P1 MMSE equalizer satisfy W 01 = W 02

and W 11 = W ∗
12. Applying these relations and similar arguments used in deriving

equations (4.62)–(4.64), the optimal frequency-domain P1 MMSE equalizer outputs
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(4.54) and (4.57) can be rewritten as

[
x̂

(k)
1

x̂
∗(k)
2

]
= UDt2F


 w1Fp1

w2Fp1


 +


 diag(y(k)

Dt1
)

−diag(y(k+1)
Dt1

)


 w11F

=


 UDt2F

∣∣∣∣∣∣
diag(y(k)

Dt1
)

−diag(y(k+1)
Dt1

)







w1Fp1

w2Fp1

w11F




4
= UF w(k) (4.65)

where UDt2F is given in (4.64) and combined equalizer and decoder vectors w1Fp1,

w2Fp1, and w11F contain the diagonal elements of γ1W 01Λ
∗(k)
3 Λ

∗(k)
1 , γ2W 01Λ

(k)
2 ,

and W 11, respectively. As in (4.64), the equalizer tap weights w(k) in (4.65) are

isolated, and again traditional block adaptive algorithms can be used to construct

the adaptive optimal frequency-domain P1 receiver.

4.5.3 Protocol I Suboptimal Frequency-Domain Adaptive

Receiver

The suboptimal frequency-domain P1 adaptive equalizer consists of independently-

adapted ‘TS1’ and ‘TS2’ equalizers as in the case of the suboptimal P1 MMSE

equalizer. The ‘TS2’ adaptive equalizer is just the adaptive FDE for P3 given in

Sec. 4.5.1. The ‘TS1’ adaptive equalizer can be easily put into block adaptive form

by considering the MMSE solutions given in (4.59) and (4.61). These two equations

can be combined, yielding


 x̂

(k)
1

x̂
∗(k)
2


 =


 W 1y

(k)
Dt1

−W 1y
(k+1)
Dt1




=


 diag(y(k)

Dt1
)

−diag(y(k+1)
Dt1

)


 w1F

4
= UDt1F w(k) (4.66)

where the equalizer tap vector w1F contains the diagonal elements of W 1. To obtain

the suboptimal frequency-domain P1 adaptive equalizer output, the ‘TS1’ and ‘TS2’
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Table 4.4: Frequency-Domain Block RLS Algorithm for Distributed TR-STBC Sys-
tems

Protocol III Protocol I Optimal

Initial conditions: Initial conditions:
w(0) = 02(N+V )×1 w(0) = 03(N+V )×1

Φ(0) = I2(N+V )×2(N+V ) Φ(0) = I3(N+V )×3(N+V )

Update taps at each iteration using: Update taps at each iteration using:

Φ(k+2) = λΦ(k) + U †
Dt2F UDt2F Φ(k+2) = λΦ(k) + U †

F UF

w(k+2) = w(k) + (Φ(k+2))−1 U †
Dt2F e(k) w(k+2) = w(k) + (Φ(k+2))−1 U †

F e(k)

where λ is small positive close to 1 where λ is small positive close to 1

adaptive equalizer outputs are scaled and combined as explained for the suboptimal

frequency-domain P1 MMSE equalizer.

4.5.4 Frequency-Domain Block RLS Algorithms

To compare the performances of the adaptive frequency-domain receivers for P1 and

P3, we have derived three frequency-domain versions of the block RLS algorithm

which are summarized in Tables 4.4 and 4.5. These versions use equations (4.64)

for the P3 receiver, (4.65) for the P1 optimal receiver and (4.64) and (4.66) for the

P1 suboptimal receivers. Here the estimation error vector e(k) is

e(k) =


 x

(k)
1

x
(k)
2


−


 x̂

(k)
1

x̂
(k)
2


 . (4.67)

The equalizer operates in training mode for the training blocks within a frame and

switches to decision directed mode for the data blocks.

4.6 Simulation Results

To simulate the distributed TR-STBC system, we use a QPSK system with a symbol

rate of 271 kSymbols/s. We consider Rayleigh fading channels with normalized

exponential power delay profiles. Although in the analysis we assume that the

channel is constant for two consecutive data blocks, in the simulations the channel
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Table 4.5: Frequency-Domain Block RLS Algorithm for Sub-Optimal P1 Distributed
TR-STBC System

P1 Sub-Optimal
TS2 TS1
Initial conditions: Initial conditions:
w(0) = 02(N+V )×1 w(0) = 0(N+V )×1

Φ(0) = I2(N+V )×2(N+V ) Φ(0) = I(N+V )×(N+V )

Equalizer output: Equalizer output:
x̂TS2 = UDt2F w(k) x̂TS1 = UDt1F w(k)

Update taps at each iteration using: Update taps at each iteration using:

Φ(k+2) = λΦ(k) + U †
Dt2F UDt2F Φ(k+2) = λΦ(k) + U †

Dt1F UDt1F

w(k+2) = w(k) + (Φ(k+2))−1 U †
Dt2F e(k) w(k+2) = w(k) + (Φ(k+2))−1 U †

Dt1F e(k)

where λ is small positive close to 1 where λ is small positive close to 1
Combined output:

x̂ = f1x̂TS2 + f2x̂TS1

is allowed to vary from symbol to symbol to more realistically model a real world

fading environment. We also assume perfect power control so that the S→D and

R→D links have equal power. We use CIR lengths L1 = 1, L2 = 3 and L3 = 3.

We compare the time- and frequency-domain equalizers using protocols P1 and

P3. Unless otherwise noted, we use a data block size of N = 124 symbols with a

ZP length of V = max(L1 + L3, L2) = 4 symbols, leading to a total block size of

N + V = 128.

As the number of taps in the TDE system is independent of the block size,

we use simulations to find a suitable number of taps for the TDE operating over

the channel specified. In this case we compare P3-based TDE and FDE systems.

Figure 4.8 shows the MMSE as a function of the number of TDE taps for different

signal-to-noise ratio (SNR) values. The figure also includes the MMSE for the FDE

system. Because the FDE is forced to have as many equalizer taps as the block

size, the length of the FDE is kept constant at 128. It is observed that the MMSE

values decrease with increasing TDE tap length, and the TDE reaches the optimum

MMSE values with far fewer taps compared to the FDE. Experimentally, we have

found that the TDE adaptive equalizer tap length is independent of the block size,



Chapter 4. Adaptive Equalization in STBC-Based Relaying Systems 86

5 10 15 20 25
−22

−20

−18

−16

−14

−12

−10

−8

−6

E
SD

/σ
nD
2  = 10dB

E
SD

/σ
nD
2  = 15dB

E
SD

/σ
nD
2  = 20dB

No. of adaptive equalizer taps, q
a

M
M

S
E

 T
he

or
y 

(d
B

)

 

 

TDE P3
FDE P3

Figure 4.8: MMSE vs. adaptive equalizer tap length (ESD/σ2
nD = ERD/σ2

nD,
ESR/σ2

nR = 20dB and N = 124).

but note that it is dependent on the type of channel involved. As a conservative

value which works well for all of the SNR values considered, we set the adaptive

equalizer length for P3 to qa = 15 for the remaining simulations in this chapter.

The required TS1 equalizer tap length, q2, would usually be less than that of the

adaptive P3 equalizer as the TS1 equalizer only has information received over the

direct S→D link. Therefore, for a conservative value of q2, we let q2 = qa is chosen

in the TS1 TDE.

The symbol error rate (SER) of the adaptive equalizers is an important steady-

state parameter measuring how well the adaptive receivers perform during different

environmental conditions. In all of the SER results given in this chapter, unless

otherwise mentioned, we use the frame format shown in Fig. 4.9. In the figure, Dx

and DxT represent actual and training data, respectively, so an 8-block data frame

includes 2 training blocks. Each block Dx or DxT has the transmission data block

format shown in Fig. 4.2. We assume that the links S→D and R→D are changing

with the same Doppler frequency but the S→R link has a significantly lower Doppler
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Figure 4.9: Frame Structure

frequency compared to the other links. This scenario would correspond, for example,

to the case of two mobile users approaching the same base station from similar

directions at similar velocities.

First, we examine the effects of the Doppler frequencies on the performance of the

systems. Figures 4.10 and 4.11 show the performances of the TDE and FDE adaptive

algorithms for P3 systems at Doppler frequencies of 10 and 30 Hz, respectively.

To show the diversity benefit of using STBC techniques, the performances of the

analogous TS1 equalizers operating without space-time coding and a relay node are

also included. The S→R link has a fixed Doppler frequency of 1Hz in all of these

simulations. From both figures, it is clear that the SER increases with Doppler

frequency as a result of the inability of the adaptive algorithms to track the faster

channel variations. As a reference the figures also include the MMSE SER values

where the receiver has perfect knowledge of the CIR at the middle of each individual

transmission block. The MMSE SER also increases with Doppler frequency due to

the increase in CIR variation across each data frame.

Figures 4.12 and 4.13 show the performances of the optimal P1, suboptimal

P1, P3 and TS1 equalizers in the time and frequency domains, respectively. The

simulations are performed at a 10Hz Doppler frequency with a very good S→R

link (ESR/σ2
nR = 30dB, 1Hz Doppler). Figure 4.12 reveals that the optimal P1

TDE performs better than the other TDE schemes in both the adaptive and non-

adaptive (MMSE) environments. In Fig. 4.13 we see that all three FDE adaptive

schemes have very similar performances with the optimal P1 FDE outperforming

for the benchmark MMSE case.

In Figs. 4.14 and 4.15 we also examine the behaviors of the equalization schemes

for P1 and P3 when the S→R link has very low signal strength. In both the time-

and frequency-domain scenarios, the performance of the P3 receiver is extremely

poor due to noise amplification at the relay terminal which is passed on to the
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Figure 4.10: Effect of Doppler frequency (10Hz and 30Hz) on the performance of
time-domain adaptive algorithms (ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 30dB and
S→R link with 1Hz Doppler frequency).

Table 4.6: Complexity of the Adaptive Algorithms
Adaptive Algorithm Number of Real Multiplications
TDE RLS P3 26M log2 M + 40M + 18q2

a − 21qa + 14
TDE RLS P1 subopti-
mal

26M log2 M +40M +18q2
a−21qa+20M1 log2 M1 +

24M1 + 14q2
2 − 21q2+16N + 30

TDE RLS P1 optimal 46M log2 M +80M +2(2qa+q2)
3/3+4(2qa+q2)

2+
6qa + 6q2 − 4

FDE RLS P3 12M2 log2 M2 + 41M2

FDE RLS P1 subopti-
mal

24M2 log2 M2 + 64M2 + 16N + 2

FDE RLS P1 optimal 16M2 log2 M2 + 207M2

Definitions: M = N + V + qa − 1, M1 = N + V + q2 − 1 and M2 = N + V
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Figure 4.11: Effect of Doppler frequency (10Hz and 30Hz) on the performance of
frequency-domain adaptive algorithms (ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 30dB
and S→R link with 1Hz Doppler frequency).



Chapter 4. Adaptive Equalization in STBC-Based Relaying Systems 90

4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

E
SD

/σ
nD
2  (dB)

S
E

R

 

 

MMSE P3
MMSE P1 suboptimal
MMSE P1 optimal
MMSE TS1
RLS P3
RLS P1 suboptimal
RLS P1 optimal
RLS TS1

Figure 4.12: SER curves for P1- and P3-based TDEs with 10Hz Doppler frequency
(ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 30dB and S→R link with 1Hz Doppler fre-
quency).
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Figure 4.13: SER curves for P1- and P3-based FDEs with 10Hz Doppler frequency
(ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 30dB and S→R link with 1Hz Doppler fre-
quency).
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Figure 4.14: SER curves for P1- and P3-based TDEs with 10Hz Doppler frequency
(ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 0dB and S→R link with 1Hz Doppler fre-
quency).

destination, overwhelming any advantage of the STBC scheme. On the other hand,

the P1 receivers have much better performance compared to P3. The superiority of

the P1 receivers in this case is due to the diversity combining of the TS1 and TS2

information, with the TS1 observations received directly through the S→D link.

We compare the adaptive (RLS) time- and frequency-domain equalizers in Fig.

4.16. The TDE adaptive RLS algorithms outperform all of the FDE algorithms.

The main reason is that the TDEs require far fewer equalizer taps than the FDEs

for the considered channel, and therefore, the TDE algorithms adapt much faster

to the changing channel than the FDE algorithms.

From the above figures we can see that overall the P1 and P3 equalizers have

better performance compared to TS1 equalizers. The main reason is that the TS1

equalizers do not used the extra information received through the relaying terminal.

Thus, the TS1 equalizers have lower diversity gain compared to the P1 and P3

equalizers.
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Figure 4.15: SER curves for P1- and P3-based FDEs with 10Hz Doppler frequency
(ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 0dB and S→R link with 1Hz Doppler fre-
quency).
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Figure 4.16: SER comparison of TDEs and FDEs adaptive (RLS) algorithms with
10Hz Doppler frequency (ESD/σ2

nD = ERD/σ2
nD, ESR/σ2

nR = 30dB and S→R link
with 1Hz Doppler frequency).
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Figure 4.17: Number of real multiplications required for adaptive algorithms.
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Finally, we examine the complexity of the adaptive algorithms. Table 4.6 gives

the complexity of each adaptive algorithm in terms of the number of real multipli-

cations required for each data block. The time-domain algorithms include linear

convolutions and correlations. Utilizing previous research on fast convolutions and

correlations for large sample sizes [52, 53, 54], the Fast Fourier Transform (FFT) is

used as an efficient method for computing the time-domain convolutions and cor-

relations in the time-domain algorithms as in Chapter 3. Furthermore, the P3 and

suboptimal P1 TDE RLS algorithms involve Hermitian Toeplitz matrix inversion.

To perform this operation, the Trench algorithm [55] is used.

To make the complexity comparison clearer, in Fig. 4.17 the number of real mul-

tiplications involved in computing each of the adaptive algorithms is plotted. The

channel parameters are fixed to those used in the simulations and we vary the data

block length, N . We see that the time-domain systems have higher complexity than

the frequency-domain systems with around twice the complexity at large values of

N . In each domain the P3 adaptive system has the lowest complexity and the P1

optimal system has the highest complexity. Thus, the time-domain adaptive al-

gorithms have better system performances but at the cost of increased complexity

compared to the frequency-domain adaptive systems. In both the time and fre-

quency domains a complexity reduction can be achieved by using the suboptimal

P1 equalizer without a significant performance reduction relative to the optimal P1

equalizer.

4.7 Summary

In this chapter we have developed time- and frequency-domain adaptive equalizers

for distributed TR-STBC systems based on the two protocols proposed in [1]. The

adaptive equalizers eliminate the need for explicit CIR estimation at the receiver.

The simulations show that the adaptive algorithms work well for both protocols,

and, at the cost of increased complexity, time-domain adaptive algorithms perform

better than frequency-domain algorithms. In both the time and frequency domains
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the Protocol I receivers outperform the Protocol III receivers, particularly in the

case of a weak S→R link.

We have also found that overall the P1 and P3 equalizers have better performance

compared to the TS1 equalizers. The main reason is that TS1 equalizers do not

use the extra information received through the relaying terminal. Thus, the TS1

equalizers have lower diversity gains compared to the P1 and P3 equalizers. Hence,

the amplifying and forward relaying system can be used to increase the performance

by improving the diversity of the system.



Chapter 5

MIMO Two-Hop One-Relay

Relaying Systems

In the previous chapter, we have developed an adaptive equalization scheme for an

AF relaying system. We showed that the relaying system improves error performance

by increasing the diversity of the system. In this chapter we analyze the ergodic

capacity of an AF MIMO two-hop system including the direct link.

Wireless relaying networks have recently been given considerable attention due

to their many advantages. Apart from increasing the range, relaying networks can

also achieve better diversity by using cooperative transmission from the source and

several relays [1, 21]. The relaying terminals forward the information from the source

to the destination mainly using the two well known methods: AF and DF. Since

MIMO systems can provide better system capacity than SISO systems, relaying has

recently been extended to MIMO scenarios [23, 24]. MIMO relays aim to provide

improved system capacity, increases in range, and better diversity.

In this chapter we analyze the ergodic capacity of an AF MIMO two-hop system

including the direct link. Most of the capacity results on two-hop MIMO relays

have been derived by employing asymptotic methods [64, 65, 66]. Furthermore, the

random matrix results required for the MIMO relay capacity analysis are usually

presented for two separate cases [67, 68], depending on whether the system is defined

97
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by a Wishart or a Pseudo-Wishart [50] distribution. However, a unified expression

for the capacity of the AF MIMO two-hop system, without the source to destination

link, was derived in [69].

The main contribution of this chapter is to derive an exact expression for the

capacity of an AF MIMO two-hop system including the source to destination link

as shown in Fig. 5.1. The expression derived in this chapter is unified, and it can

be used for arbitrary numbers of antennas at the source, relay and destination. In

the chapter we also present simulation results to validate the analysis and use the

results to quantify the capacity improvement due to the direct link.

5.1 System Model

We use the relay network topology shown in Fig. 5.1. The source (S), relay (R), and

destination (D) terminals are equipped with ns, nr and nd antennas respectively,

which we represent by the 3-tuple (ns, nr, nd). During the first hop, S transmits

(broadcasts) to R and D and in the second hop R transmits the amplified sig-

nal from the first hop to D. We assume that the normalized channel matrices for

the source-to-relay (S→R), source-to-destination (S→D), and relay-to-destination

(R→D) links are given by H1 ∈ Cnr×ns , H3 ∈ Cnd×ns , and H2 ∈ Cnd×nr , respec-

tively. We also assume that S and R have no CSI, that D has perfect knowledge

of all the channels, and the channels are frequency-flat and the entries of the chan-

nel matrices are ZMCSCG random variables of unit variance. Furthermore, it is

assumed that R assists in the communication with D using AF mode. Hence, R

amplifies the received observation corresponding to the signal from S by a factor, b,

and retransmits it to D. The received signal at the destination after the two hops

is then given by

y =




√
P3H3

√
P2

√
P1bH2H1


 x +


 n3

√
P2bH2n1 + n2


 . (5.1)

In (5.1), the parameters P1, P2 and P3 are the average powers of the S→R, R→D

and S→D links, respectively, taking into account the different path loss and shad-
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Figure 5.1: MIMO relay network topology.

owing effects over the links. The variables n1, n2 and n3 are the noise vectors at R,

D (second-hop) and D (first-hop) respectively, and x is the vector of transmit sym-

bols. The transmit symbols are assumed i.i.d. with E{xx†} = ρIns . The noise at

R and D is modeled as ZMCSCG with E{n1n
†
1} = σ2

1Inr , E{n2n
†
2} = σ2

2Ind
, and

E{n3n
†
3} = σ2

3Ind
. With this information, and defining F1 =

√
P2

√
P1b, F2 =

√
P2b,

F3 =
√

P3, the received signal at the destination can also be written as

y = Hx + Bv (5.2)

where

H =


 F3H3

F1H2H1


 , (5.3)

B =


 σ2

3Ind
0

0 σ2
1F

2
2 H2H

†
2 + σ2

2Ind




1/2

, (5.4)

and v is a normalized zero mean Gaussian noise vector, which has I2nd
as its co-

variance matrix.

5.2 Capacity Analysis

The ergodic capacity of the system is given by [23] as below, (the factor 1/2 accounts

for the fact that information is conveyed to the destination terminal over two time

slots [1])

C =
1

2
E

{
log2

∣∣I2nd
+ ρHH†(BB†)−1

∣∣} . (5.5)
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The singular value decomposition of H2 can be defined as H2 = UDV †, where D

is an nd×nr diagonal matrix with {√ν1, . . . ,
√

νl} as the main diagonal elements in

decreasing order and where l = min(nd, nr). Then, using the identity det(I+AB) =

det(I + BA) and defining Φ = σ2
1F

2
2 H2H

†
2 + σ2

2Ind
, the ergodic capacity can also

be written as

C =
1

2
E

{
log2

∣∣Ins + ρH†(BB†)−1H
∣∣}

=
1

2
E





log2

∣∣∣∣∣∣∣
Ins + ρ


 F3H3

F1H2H1



† 
 σ2

3Ind
0

0 Φ



−1 

 F3H3

F1H2H1




∣∣∣∣∣∣∣





=
1

2
E

{
log2

∣∣∣Ins + ρ
(
σ−2

3 F 2
3 H†

3H3 + F1H
†
1H

†
2Φ

−1F1H2H1

)∣∣∣
}

=
1

2
E



log2

∣∣∣∣∣∣
Ins + ρ

(
H†

3 H†
1

)

 σ−2

3 F 2
3 Ind

0

0 F 2
1 H†

2Φ
−1H2





 H3

H1




∣∣∣∣∣∣



 .

(5.6)

Substituting H2 = UDV † into (5.6) gives

C =
1

2
E

{
log2

∣∣∣Ins + ρU †
tAU t

∣∣∣
}

(5.7)

where

A =


 σ−2

3 F 2
3 Ind

0

0 Ω


 , U t =


 U †H3

V †H1


 . (5.8)

In (5.8), Ω = F 2
1 D† (σ2

1F
2
2 DD† + σ2

2I
)−1

D. Note that U t contains i.i.d ZMCSCG

entries since the unitary matrices U † and V † do not change the statistics of H3 and

H1. After defining c = σ−2
3 F 2

3 , c1 = (F 2
1 − σ−2

3 F 2
3 σ2

1F
2
2 ), c2 = σ−2

3 F 2
3 σ2

2, c3 = F 2
1 ,

c4 = σ2
1F

2
2 , and c5 = σ2

2, Ω can be given as

Ω =





diag
{

c3ν1

c4ν1+c5
, . . . , c3νl

c4νl+c5

}
, for nr 6 nd

diag





c3ν1

c4ν1+c5
, . . . , c3νl

c4νl+c5
, 0, . . . , 0︸ ︷︷ ︸

nr−nd



 , for nr > nd

. (5.9)

Further, by defining m = max(nd, nr), q = nd + l and s = min(ns, q), the ergodic

capacity can also be expressed as

C =
1

2
E

{
log2

∣∣∣Ins + ρ Ũ
†
tÃŨ t

∣∣∣
}

(5.10)
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where Ũ t ∈ Cns×q has i.i.d ZMCSCG entries with unit variance and

Ã =


 cInd

0

0 diag
{

c3ν1

c4ν1+c5
, . . . , c3νl

c4νl+c5

}

 . (5.11)

Note that Ã and Ũ t are simply re-sized versions of A and U t according to nr 6 nd

or nr > nd. Since l = min(nd, nr) in (5.11), Ã is an (nd + nr)× (nd + nr) diagonal

matrix and Ũ t ∈ Cns×(nd+nr) when nr 6 nd, and Ã is an (nd + nd) × (nd + nd)

diagonal matrix and Ũ t ∈ Cns×(nd+nd) when nr > nd. Now using the procedure

explained in Sec. 2.5 for MIMO system capacity analysis, the ergodic capacity can

be written as

C =
s

2ln(2)

∫ ∞

0

ln(1 + ρλ) f(λ) dλ, (5.12)

where λ denotes an arbitrary eigenvalue of Ũ
†
tÃŨ t and f(λ) is the PDF of λ.

Hence, to find the ergodic capacity of the system, we need to find the arbitrary

eigenvalue density, f(λ), of the random matrix Ũ
†
tÃŨ t. The derivation of f(λ) is

given below. The derivation of f(λ) and the capacity expressions for the different

cases given below involves a complex series of steps. This is given in a fairly dense

form. However an overview of the results is given in Sec. 5.3 to clarify the application

of the relevant formulae.

5.2.1 Derivation of the Arbitrary Eigenvalue Density, f(λ)

Assuming the random diagonal matrix Ã has all distinct eigenvalues µ = {µ1, . . . , µq},
then the conditional unordered eigenvalue PDF f(λ|µ) for arbitrary numbers of an-

tennas at the source, relay and destination can be obtained from [69] as

f(λ|µ) =
1

s
∏q

k<p(µp − µk)

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)
|G| , (5.13)

where G is a q × q matrix with entries

Gi,j =





µi−1
j , for i 6= k

µq−ns−1
j e

− λ
µj , for i = k

. (5.14)
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However, the eigenvalues of Ã are not all distinct but can be given as {c, . . . , c, µ1, . . .

, µl}, where c is a constant which has multiplicity nd and µk = c3νk

c4νk+c5
are random

variables, which are unequal with probability 1. When Ã does not have all distinct

values, the conditional PDF f(λ|µ) can be obtained by using the following identities

on multiple derivatives,

1. If y = xn, then the kth derivative of y, y(k) = (n − k + 1)k xn−k, where (n)k is

the Pochhammer symbol.

2. If y = xne−s/x, then the kth derivative of y, y(k) = e−s/x
∑k

i=0
k!

i!(k−i)!
(n − k +

1)k−i si xn−k−i.

These derivatives are then used to derive an alternative version of (5.13) using the

method given in Lemma 2 of [48]. The lemma basically explains the derivation of

f(λ|µ) for the general case when not all the µk values are necessarily distinct. With

this approach f(λ|µ) can be calculated as

f(λ|µ) =
1

s
∏l

k<p(µk − µp)
∏l

k=1(c− µk)nd
∏nd−1

k=1 k!

× 1

(−1)q(q−1)/2

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)
|G| , (5.15)

where Γm(n) =
∏m

i=1 Γ(n− i + 1) and G is a q × q matrix with entries given as

Gi,j =





(i− nd + j)nd−j ci−nd+j−1, for i 6= k, j = 1, . . . , nd

∑nd−j
t=0 e−

λ
c

(nd−j)!
t!(nd−j−t)!

×(q − ns − nd + j)nd−j−tλ
tcq−ns−nd+j−1−t, for i = k, j = 1, . . . , nd

µi−1
j−nd

, for i 6= k, j = nd + 1, . . . , q

µq−ns−1
j−nd

e
− λ

µj−nd , for i = k, j = nd + 1, . . . , q

.

(5.16)

Then, using the results in (5.15)-(5.16) the arbitrary eigenvalue PDF, f(λ), can be

derived as given below. Here, the main case considered is P1 6= P3, (c1 6= 0) which is

of more physical interest. The special case, P1 = P3, (c1 = 0) has to be considered

separately and yields a simpler result.
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The PDF of λ, f(λ), can be calculated by using the result in (5.15). The eigen-

values of Ã, µ = {c, . . . , c, µ1, . . . , µl}, are related to the eigenvalues of H2H
†
2,

ν = {ν1, . . . , νl} via, µk = c3νk

c4νk+c5
. Then, using the result for f(λ|µ) in (5.15),

f(λ|ν) can be obtained by substituting µk = c3νk

c4νk+c5
in f(λ|µ), as fixing the value of

µ is equivalent to fixing the value of ν. Then using f(λ|ν) and f(ν), the eigenvalue

p.d.f f(λ) can be derived as shown below.

The matrix H2H
†
2 is Wishart or pseudo-Wishart [50] depending on the dimen-

sion, nd × nr, of H2. However, the non-zero eigenvalues of H2H
†
2 are the same

irrespective of whether the matrix is Wishart or pseudo-Wishart. Hence, the non-

zero unordered eigenvalue p.d.f of H2H
†
2 can be given as [49]

f(ν) =
πl(l−1)

l!CΓl(l)CΓl(m)

l∏

k=1

νm−l
k e−νk

l∏

k<p

(νk − νp)
2, (5.17)

where CΓl(m) denotes the complex multivariate gamma function,

CΓl(m) = πl(l−1)/2

l∏

k=1

Γ(m− k + 1). (5.18)

Using the result in (5.15), the conditional PDF, f(λ|ν), can be obtained by substi-

tuting µk = c3νk

c4νk+c5
in (5.15) as

f(λ|ν) =
1

s
∏nd−1

k=1 k!(−1)q(q−1)/2(c3c5)l(l−1)/2

× 1∏l
k<p(νk − νp)

∏l
k=1

((cc4−c3)νk+cc5)nd

(c4νk+c5)nd+l−1

×
q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)
|G| . (5.19)

Then, using the relation f(λ, ν) = f(ν)f(λ|ν), f(λ, ν) can be given as

f(λ, ν) =
πl(l−1)

l! CΓl(l) CΓl(m)

(−1)−ndl

s
∏nd−1

k=1 k!(−1)q(q−1)/2(c3c5)l(l−1)/2

×
l∏

k=1

νm−l
k e−νk

(c4νk + c5)
q−1

(c1νk − cc5)nd

l∏

k<p

(νk − νp)

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)
|G|

, C0

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)

l∏

k=1

ξ(νk) |Φi(νj)| |G| . (5.20)
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In (5.20),
∏l

k<p(νk − νp) = (−1)l(l−1)/2 |Φj(νi)|, Φi(νj) = νi−1
j ,

C0 =
πl(l−1)

l!CΓl(l)CΓl(m)

(−1)−ndl(−1)l(l−1)/2

s
∏nd−1

k=1 k!(−1)q(q−1)/2(c3c5)l(l−1)/2
, (5.21)

ξ(νk) = νm−l
k e−νk

(c4νk + c5)
q−1

(c1νk − cc5)nd
, (5.22)

and G is a q × q matrix with entries given as

Gi,j =





(i− nd + j)nd−j ci−nd+j−1, for i 6= k, j = 1, . . . , nd

∑nd−j
t=0 e−

λ
c

(nd−j)!
t!(nd−j−t)!

×(q − ns − nd + j)nd−j−tλ
tcq−ns−nd+j−1−t, for i = k, j = 1, . . . , nd(

c3νj−nd

c4νj−nd
+c5

)i−1

, for i 6= k, j = nd + 1, . . . , q
(

c3νj−nd

c4νj−nd
+c5

)q−ns−1

e
−λ(c4νj−nd

+c5)

c3νj−nd , for i = k, j = nd + 1, . . . , q

.

(5.23)

Now f(λ) can be obtained by integrating (5.20) over all νj as,

f(λ) =

∫ ∞

0

. . .

∫ ∞

0

f(λ, ν) dν1 . . . dνl

= C0

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)

×
∫ ∞

0

. . .

∫ ∞

0

l∏

k=1

ξ(νk) |Φi(νj)| |G| dν1 . . . dνl. (5.24)

Note that the form of the integration in (5.24) is exactly the same as the integrals

defined in Lemma 2 of [32]. In particular the structure of ξ, Φi(νj) and G given in

(5.22), (5.20) and (5.23), respectively, is identical to the required structure in [32].

Hence, the integration is obtained by an immediate application of [32] as,

∫ ∞

0

. . .

∫ ∞

0

l∏

k=1

ξ(νk) |Φi(νj)| |G| dν1 . . . dνl = l! |Ψ| , (5.25)
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where Ψ is a q × q matrix with entries given as

Ψi,j =





(i− nd + j)nd−j ci−nd+j−1, for i 6= k, j = 1, . . . , nd

∑nd−j
t=0 e−

λ
c

(nd−j)!
t!(nd−j−t)!

×(q − ns − nd + j)nd−j−tλ
tcq−ns−nd+j−1−t, for i = k, j = 1, . . . , nd

∫
xj−nd−1

(
c3x

c4x+c5

)i−1

ξ(x)dx , IA(i, j), for i 6= k, j = nd + 1, . . . , q
∫

xj−nd−1
(

c3x
c4x+c5

)q−ns−1

e
−λ(c4x+c5)

c3x ξ(x)dx, for i = k, j = nd + 1, . . . , q

.

(5.26)

Hence, f(λ) can be obtained by integrating (5.20) over all νj by using the method

described in Lemma 2 of [32] as,

f(λ) = C0

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)

×
∫ ∞

0

. . .

∫ ∞

0

l∏

k=1

ξ(νk) |Φi(νj)| |G| dν1 . . . dνl

, C0l!︸︷︷︸
C1

q∑

k=q−s+1

λns−q+k−1

Γ(ns − q + k)
|Ψ| . (5.27)

In (5.26), IA(i, j) is defined to be

IA(i, j) =

q−i∑
v=0


 q − i

v




(
c4

c1

)v (
c4c2

c1

+ c5

)q−i−v

×
j+i+m−q−2∑

w=0


 j + i + m− q − 2

w


 ci−1

3 e−c2/c1

cw+1
1

(
c2

c1

)j+i+m−q−2−w

IA1,

(5.28)

where IA1 is calculated below for the different system parameters. Finally, the PDF

of an arbitrary eigenvalue, λ, of Ũ
†
tÃŨ t can be obtained by using the Laplace

expansion of (5.27) as

f(λ) = C1

q∑
i=q−s+1

q∑
j=1

(−1)i+j λns−q+i−1

Γ(ns − q + i)
|Ki,j|Aλ(i, j), (5.29)

where

C1 =
πl(l−1)

CΓl(l) CΓl(m)

(−1)−ndl(−1)l(l−1)/2

s
∏nd−1

k=1 k!(−1)q(q−1)/2 (c3c5)l(l−1)/2
, (5.30)
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and Aλ(i, j) is given as

Aλ(i, j) =





∑nd−j
t=0 e−

λ
c

(nd−j)!
t!(nd−j−t)!

×(q − ns − nd + j)nd−j−t

×λtcq−ns−nd+j−1−t, for i = 1, . . . , q, j = 1, . . . , nd

∫∞
0

xj−nd−1
(

c3x
c4x+c5

)q−ns−1

×e
− λ

( c3x
c4x+c5

) ξ(x) dx, for i = 1, . . . , q, j = nd + 1, . . . , q

.

(5.31)

In (5.31), ξ(x) is obtained by replacing νk by x in (5.22) as

ξ(x) = xm−le−x (c4x + c5)
q−1

(c1x− c2)nd
, (5.32)

and in (5.29), Ki,j denotes the (i, j)th minor of K with elements given by

Ki,j =





(i− nd + j)nd−j ci−nd+j−1, for i = 1, . . . , q, j = 1, . . . , nd

∫∞
0

xj−nd−1
(

c3x
c4x+c5

)i−1

ξ(x) dx

, IA(i, j), for i = 1, . . . , q, j = nd + 1, . . . , q

.

(5.33)

In (5.28), if c1 > 0, (P1 > P3) then IA1 =
∫∞
−c2

yv+w−nde
− y

c1 dy. Since c2 > 0 the

integral includes the point y = 0 where a singularity occurs when v +w−nd < 0. In

this case the individual integral diverges but the sum of integrals implicit in (5.29)

must remain finite. Hence, the integral is computed as

IA1 =

∫ −ε

−c2

yv+w−nde
− y

c1 dy

︸ ︷︷ ︸
IA11

+

∫ ∞

ε

yv+w−nde
− y

c1 dy

︸ ︷︷ ︸
IA12

. (5.34)

where ε is a very small positive number close to zero. With this approach the

divergent integrals cancel out in (5.29) and the resulting computations prove to be

robust and stable. In (5.34) the two integrals can be evaluated as

IA12 =





−e
−ε
c1

∑v+w−nd

k=0
(−1)v+w−nd−k(v+w−nd)!(ε)k

k!(−1/c1)v+w−nd−k+1 , for v + w − nd ≥ 0

(−1)nd−w−v(1/c1)nd−w−v−1Ei(−ε/c1)
(nd−w−v−1)!

+
∑nd−w−v−2

k=0
e−ε/c1

(ε)nd−w−v−1

× (−1)k(1/c1)k(ε)k

(nd−w−v−1)(nd−w−v−2)...(nd−w−v−1−k)
, for v + w − nd < 0

. (5.35)
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IA11 =





e
ε

c1

∑v+w−nd

k=0
(−1)v+w−nd−k(v+w−nd)!(−ε)k

k!(−1/c1)v+w−nd−k+1

−e
c2
c1

∑v+w−nd

k=0
(−1)v+w−nd−k(v+w−nd)!(−c2)k

k!(−1/c1)v+w−nd−k+1 , for v + w − nd ≥ 0

(−1)nd−w−v−1(1/c1)nd−w−v−1Ei(ε/c1)
(nd−w−v−1)!

+ (−1)nd−w−v(1/c1)nd−w−v−1Ei(c2/c1)
(nd−w−v−1)!

−∑nd−w−v−2
k=0

eε/c1

(−ε)nd−w−v−1

× (−1)k(1/c1)k(−ε)k

(nd−w−v−1)(nd−w−v−2)...(nd−w−v−1−k)

+
∑nd−w−v−2

k=0
ec2/c1

(−c2)nd−w−v−1

× (−1)k(1/c1)k(−c2)k

(nd−w−v−1)(nd−w−v−2)...(nd−w−v−1−k)
, for v + w − nd < 0

. (5.36)

In (5.35) and (5.36), Ei(x) is the exponential integral. Note also that when c1 > 0,

the integral in (5.31) has a singular point at x = c2/c1. That integral also has to be

approximated as in (5.34), and to be consistent, the region of integration has to be

(0, c2/c1 − ε/c1) and (c2/c1 + ε/c1,∞).

If c1 < 0, (P1 < P3) then IA1 =
∫∞

c2
−(−y)v+w−nd e

y
c1 dy in (5.28) and is given by

IA1 = (c1)
v+w−nd+1 Γ(v + w − nd + 1,−c2/c1), (5.37)

where Γ(a, z) =
∫∞

z
e−xxa−1dx is the complementary incomplete gamma function.

Then, using the above result and (5.12), the ergodic capacity can be calculated

as

C =

q∑
i=q−s+1

q∑
j=1

s

2 ln(2)
C1(−1)i+j |Ki,j|

.

∫ ∞

0

ln(1 + ρλ)
λns−q+i−1

Γ(ns − q + i)
Aλ(i, j) dλ

︸ ︷︷ ︸
IB

(5.38)

where IB is given as

IB =





∑nd−j
t=0

∑ns+t−q+i
r=1

(nd−j)!
t!(nd−j−t)!

× (q−ns−nd+j)nd−j−t

Γ(ns−q+i)
cq−ns−nd+j−1−t

×(1/ρ)ns+t−q+i(ns + t− q + i− 1)!e
1
ρc

×Γ (−(ns + t− q + i) + r, 1/(ρc)) (ρc)r, i = 1, . . . , q, j = 1, . . . , nd

IC , i = 1, . . . , q, j = nd + 1, . . . , q

,

(5.39)
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and

IC =

∫ ∞

0

xj−nd−1(ns − q + i− 1)!

Γ(ns − q + i)

(
c3x

c4x + c5

)q−ns−1

(1/ρ)ns−q+i

× e
c4x+c5

ρc3x

ns−q+i∑

k=1

Γ(−(ns − q + i) + k, (c4x + c5)/(ρc3x))

((c4x + c5)/(ρc3x))k
ξ(x) dx. (5.40)

A closed-form expression for the integral, IC , in (5.39) is difficult to find but it can

be evaluated numerically. Again, note that when c1 > 0, the integral, IC , has a

singular point at x = c2/c1. The same approximation is used as in (5.34), and the

region of integration is (0, c2/c1 − ε/c1) to (c2/c1 + ε/c1,∞).

Special Case: Ergodic Capacity of a (1,1,1) System

For the special case of a (1,1,1) system, the capacity expression given in (5.38)

reduces to

C = −ce
1
ρc Γ (0, 1/(ρc))

2 ln(2)

(
c4c2

c1

+ c5

)
e−c2/c1

c1

(Ei(ε/c1)− Ei(c2/c1)− Ei(−ε/c1))

− ce
1
ρc Γ (0, 1/(ρc))

2 ln(2)

(
c4

c1

)
e−c2/c1(ec2/c1 + e−ε/c1 − eε/c1)

+
1

2 ln(2)

∫ ∞

0

c3 x e−xe
c4x+c5

ρc3x Γ(0, (c4x + c5)/(ρc3x))
1

(c1x− c2)
dx,

(5.41)

when P1 > P3, and

C = −ce
1
ρc Γ (0, 1/(ρc))

2 ln(2)

(
c4c2

c1

+ c5

)
e−c2/c1

c1

Γ(0,−c2/c1)

− ce
1
ρc Γ (0, 1/(ρc))

2 ln(2)

(
c4

c1

)
e−c2/c1Γ(1,−c2/c1)

+
1

2 ln(2)

∫ ∞

0

c3 x e−xe
c4x+c5

ρc3x Γ(0, (c4x + c5)/(ρc3x))
1

(c1x− c2)
dx,

(5.42)

when P1 < P3. Note that the integral in (5.41) has a singular point at x = c2/c1. The

same approximation is used as in (5.34), and the region of integration is (0, c2/c1 −
ε/c1) to (c2/c1 + ε/c1,∞).
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The result in (5.38) is for the case where P1 6= P3, (c1 6= 0). The special case,

P1 = P3, (c1 = 0) occurs with probability zero in a random fading environment.

Furthermore, in practical systems this scenario is not very interesting as the relay

link is usually much stronger. However, results for the case where P1 = P3 are given

below for completeness.

5.2.2 Ergodic Capacity when P1 = P3

In this special case, when P1 = P3, the ergodic capacity of the system can be

obtained by using (5.38). However, Ki,j and IB in (5.38) have to be re-evaluated

by substituting c1 = 0. Then, denoting K
′
i,j and I

′
B as the re-evaluated version of

Ki,j and IB, respectively, by substituting c1 = 0 in (5.38), K
′
i,j can be evaluated as

K
′
i,j =





(i− nd + j)nd−j ci−nd+j−1, for i = 1, . . . , q, j = 1, . . . , nd

∫∞
0

xj−nd−1
(

c3x
c4x+c5

)i−1

ξ(x)dx

, I
′
A(i, j), for i = 1, . . . , q, j = nd + 1, . . . , nd + l

,

(5.43)

where I
′
A(i, j) = ci−1

3 (−c2)
−nd

∑q−i
v=0


 q − i

v


 (c4)

v (c5)
q−i−v Γ(v+j+i+m−q−1),

and I
′
B can be calculated as

I
′
B =





∑nd−j
t=0

(nd−j)!
t!(nd−j−t)!

(q−ns−nd+j)nd−j−t

Γ(ns−q+i)

×∑ns+t−q+i
r=1 cq−ns−nd+j−1−t(1/ρ)ns+t−q+i

×(ns + t− q + i− 1)!e
1
ρc

×Γ(−(ns + t− q + i) + r, 1/(ρc))(ρc)r, ; i = 1, . . . , q, j = 1, . . . , nd

I
′
C , i = 1, . . . , q, j = nd + 1, . . . , q

,

(5.44)
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where

I
′
C =

2cq−ns−1
3

(−c2)nd

ns∑
v=0


 ns

v


 cv

4c
ns−v
5

×
∫ ∞

0

ln(1 + ρλ)λns−q+i−1

Γ(ns − q + i)
e
−λc4

c3

(
λc5

c3

) v+j+m−ns−1
2

Kv+j+m−ns−1

(
2

√
λc5

c3

)
dλ.

(5.45)

Then, substituting (5.43) and (5.44) in (5.38), the ergodic capacity of the system

when P1 = P3 can be obtained. By using the result in (5.38), the ergodic capacity

of the system without the direct link can also be obtained as a special case. The

derivation is given below.

5.2.3 Ergodic Capacity without the Direct Link

When the direct link is removed, P3 = 0, σ2
3 = 0 and P3/σ

2
3 = 0. This implies that

c = 0, c1 = F 2
1 and c2 = 0. Substituting these values in (5.38), the ergodic capacity

without the direct link can be obtained. In this case, the terms Ki,j and IB in (5.38)

are simpler than before. Then, denoting K
′′
i,j and I

′′
B as the re-evaluated version of

Ki,j and IB, respectively, for this case, K
′′
i,j can be evaluated as

K
′′
i,j =





0, i = 1, . . . , q, j = 1, . . . , nd, i 6= nd − j + 1

(i− nd + j)nd−j, i = 1, . . . , q, j = 1, . . . , nd, i = nd − j + 1
∫∞
0

xj−nd−1
(

c3x
c4x+c5

)i−1

ξ(x)dx

, I
′′
A(i, j), i = 1, . . . , q, j = nd + 1, . . . , nd + l

,

(5.46)

where

I
′′
A(i, j) = c−nd

1 ci−1
3

q−i∑
v=0


 q − i

v


 (c4)

v (c5)
q−i−v

∫ ∞

0

xj+i+m+v−nd−2−qe−xdx

︸ ︷︷ ︸
I
′′
A1

.

(5.47)

The integral, I
′′
A1, in (5.47) includes the point x = 0 where a singularity occurs when

j + i+m+v−nd−2−q < 0. In this case, as before, the individual integral diverges
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but the sum of integrals implicit in (5.38) must remain finite. Hence, the integral is

computed as

I
′′
A1 =

∫ ∞

ε

xj+i+m+v−nd−2−qe−xdx

= Γ(j + i + m + v − nd − 1− q, ε), (5.48)

where ε is a very small positive number close to zero. Also, I
′′
B can be calculated as,

I
′′
B =





0, for i = 1, . . . , q, j = 1, . . . , nd

IC , for i = 1, . . . , q, j = nd + 1, . . . , q
, (5.49)

where IC is given in (5.40) with c2 = 0. Note that the integral, IC , in (5.49) may

have a singular point at x = 0. Hence, the same approximation is used as in (5.48),

and the region of integration is ε to ∞. Then substituting (5.46) and (5.49) into

(5.38), the ergodic capacity of the system without the direct link can be obtained.

5.3 Overview of Analysis

The results derived above involve a complex series of steps. Hence, in this subsec-

tion we briefly outline what we have done and the results derived in the previous

sections. The main objective of this chapter has been to analyze the ergodic capac-

ity of an AF MIMO two-hop system including the direct link. We have derived the

ergodic capacity expressions for different situations from the PDF of the arbitrary

eigenvalue. Our derived results are summarized in Fig. 5.2.

5.4 Results and Discussion

We now validate our results by using Monte Carlo simulations. In all the results

given, the following conditions are used:

• the total transmitted power from the source is equal to one, ρ = 1/ns;

• on average, the total transmitted power from the relay is equal to one, b =
√

1/(nrP1 + nrσ2
1).
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Ergodic capacity 

derivation 

Ergodic capacity 
expression defined in 

terms of f (λ) in (5.12) 
 

f (λ) computed for the 
general case in (5.27) 

 

Final ergodic capacity 

expression for the general 

case given in (5.36) 

 

SPECIAL CASE 1 

Ergodic capacity for 

P1 = P3 given in 

Sec. 5.2.2 

SPECIAL CASE 2 

Ergodic capacity 

with no direct link 

given in Sec. 5.2.3 

Figure 5.2: Overview of the results derived in Chapter 5.

Furthermore, we set σ2
1 = σ2

2 = σ2
3 = 1, implying that the SNR of the links (S→D),

(S→R) and (R→D) are P3, P1 and P2, respectively. First, in Fig. 5.3, the result

in (5.29) for the PDF of the arbitrary eigenvalue λ is validated via simulation. The

plot shows the PDF of the arbitrary eigenvalue λ for system configuration (3, 2, 3).

Figure 5.3 shows that the analytical results are in agreement with the simulations.

In Figure 5.4 we plot the analytical and simulated ergodic capacity of the AF

MIMO system given in Fig. 5.1. The analytical results are based on (5.38) and the

results are given for the system configurations: (2, 2, 2), (2, 2, 3) and (3, 2, 3). The

results are given as a function of the SNR in the links as P1 = P2 = 1.5P3. We see

that the analytical results exactly match the simulations.
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Figure 5.3: Analytical and simulated PDFs of the arbitrary eigenvalue of Ũ
†
tÃŨ t,

with system parameters: (3, 2, 3), P1 = P2 = 10dB, and P3 = 5dB.

In Figure 5.5 we show the performance of the analytical and simulated ergodic

capacity of the system with configuration (3, 2, 3), when the S→D link strength

varies. The results show that the capacity of the system improves with increases in

the S→D signal strength due to diversity improvement. Note that when P3 = P1,

the results in Sec. 5.2.2 are used to generate the analytical results. We also include

the performance of the system without the direct link, obtained using the results

in Sec. 5.2.3. Hence, Fig. 5.5 shows the performance gains of the system due to

the inclusion of the direct link. Again the analytical results exactly match with the

simulations.

Finally, Fig. 5.6 illustrates the performance of a (3, 2, 3) system with a varying

R→D link SNR. The SNRs have the relationship P1 = αP2 = 10dB. The results

show that when P3 (the SNR of the S→D link) is high there is not much improve-

ment in capacity even though P2 is increased. Also, when P3 is weak, the capacity

improvement due to increases in P2 is more obvious. As expected, this implies that

when there is a good S→D link, there is less advantage in having an amplify-and-
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Figure 5.4: Analytical and simulated ergodic capacity values of the system with
parameters: P1 = P2 = 1.5P3.
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Figure 5.6: Analytical and simulated ergodic capacity values of a (3, 2, 3) system vs.
α, where P1 = αP2 = 10dB. Also shown is the S→D link power, P3.

forward relay. However, the relay is useful when the S→D link is weak.

5.5 Summary

In this chapter we have given an ergodic capacity analysis of an AF MIMO two-hop

system including the source to destination link. We first derived an expression for

the probability density function of the unordered eigenvalue of the system and from

that, derived a closed-form expression for the ergodic capacity of the system. Note

that the final capacity result requires a single numerical integral. This is undesirable,

but is to be expected as capacity results for simpler MIMO relays [69] also involve

one numerical integral. The analysis is validated by using simulations, and both

results match exactly. We show that having the direct link improves the capacity

due to diversity and quantify this improvement. Furthermore, we demonstrate that

when there is a good S→D link, there is limited advantage in having an amplify-

and-forward relay from a capacity vantage point. However, the relay is useful when
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the S→D link is weak.



Chapter 6

MIMO Two-Hop Two-Relay

Relaying Systems

In the previous chapter we analyzed an ergodic capacity of an AF MIMO two-hop

one relay system including the source to destination link. Our main contribution in

this chapter is to derive an exact expression for the capacity of an AF MIMO two-

hop two relay system as shown in Fig. 6.1. We first develop an expression for the

probability density function of an arbitrary eigenvalue of the system. Then, using

this result, we derive an exact expression for the ergodic capacity of the system.

We also present simulation results to validate the analysis. Further, we show that

the ergodic capacity for a single relaying system without the direct link can be

derived from the results in this chapter as a special case. These expressions are

useful for gaining further insights into the effects of various system parameters on

the performance of the wireless relaying system.

6.1 System Model

The source (S), relay (Rx), and destination (D) terminals are equipped with ns,

nr and nd antennas, respectively. We represent the number of antennas used in

the system by the 3-tuple (ns, nr, nd). For simplicity, it is assumed that both the

relays have an equal numbers of antennas although this is not necessary for the

117
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Figure 6.1: MIMO relay network topology.

analytical approach. In this model we assume that there is no direct link between

the source and destination. This will be the case when the S→D distance is large

and the relays are used to make communication possible, rather than to improve

performance. During the first hop, the source terminal transmits (broadcasts) to the

relays and in the second hop, the relay terminals transmit the amplified signal from

the first hop to the destination. We assume that the normalized channel matrices

for the source-to-relay (S→R1, S→R2), and relay-to-destination (R1→D, R2→D)

links are given by H11,H21 ∈ Cnr×ns , and H12,H22 ∈ Cnd×nr , respectively. We also

assume that the channels are frequency-flat and the entries of the channel matrices

are ZMCSCG random variables of unit variance. Furthermore, we let that the relay

terminal assist in the communication with the destination terminal using AF mode.

In this mode, without decoding or demodulation the relay terminal, Rx amplifies the

received observation corresponding to the signal from the source by a factor, ax and

retransmits it to the destination. In this analysis, ax is chosen so that on average

the total transmitted power from Rx is Pr. The received signal at the destination
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after the two hops is then given by

y =

U 1︷ ︸︸ ︷[
H12 H22

]
Γ

U 2︷ ︸︸ ︷
 H11

H21


 x

+
[

H12 H22

]

 σ α

a1
Inr 0

0 σ β
a2

Inr




︸ ︷︷ ︸
D


 n1

n2




︸ ︷︷ ︸
w

+σn

, U 1ΓU 2x + U 1Dw + σn (6.1)

where

Γ =


 γ

√
Pt

ns

α
a1

Inr 0

0 δ
√

Pt

ns

β
a2

Inr


 .

In (6.1), the parameters γ2, δ2, α2 and β2 are the average powers of the S→R1,

S→R2, R1→D and R2→D links, respectively, taking into account the different

path loss and shadowing effects over the links. The variables σn1, σn2 and σn are

the noise vectors at R1, R2 and D, respectively, and
√

Pt

ns
x is the vector of transmit

symbols. The transmit symbols are i.i.d. with E{Pt

ns
xx†} = Pt

ns
Ins . Hence, the

total transmit power is Pt. The noise at the relays and destination is modeled as

ZMCSCG with E{σ2n1n
†
1} = σ2Inr , E{σ2n2n

†
2} = σ2Inr , and E{σ2nn†} = σ2Ind

.

With this information, and defining B = (σ2Ind
+ U 1D

2U †
1)

1/2, the received signal

at the destination can also be written as

y = Ax + Bv (6.2)

where A = U 1ΓU 2 and v is a normalized noise vector which has Ind
as its covariance

matrix.

6.2 Capacity Analysis

The ergodic capacity of the system can be calculated following [23] as below, (the

factor 1/2 accounts for the fact that information is conveyed to the destination
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terminal over two time slots [1]):

C =
1

2
E

{
log2

∣∣Ind
+ AA†(BB†)−1

∣∣} . (6.3)

To make the analysis possible, we have to assume that both relays receive the signal

with the same SNR, i.e. γ2 = δ2. This is reasonable when the link distances

are similar and is the scenario which tends to maximize the relay capacity. When

γ2 6= δ2 bounds and approximations are also developed later in the section.

Using the identity det(I + AB) = det(I + BA), and defining Ũ 1 , U 1D, the

capacity can be rewritten as

C =
1

2
E

{
log2

∣∣∣Ins + ρU †
2Ũ

†
1(σ

2Ind
+ Ũ 1Ũ

†
1)
−1Ũ 1U 2

∣∣∣
}

(6.4)

where ρ = γ2Pt

σ2ns
. Assuming that nd < 2nr, and using the singular value decomposi-

tion Ũ 1 = E1V E†
2, the capacity can also be written as

C =
1

2
E

{
log2

∣∣∣Ins + ρ Ũ
†
2V

†(σ2Ind
+ V V †)−1V Ũ 2

∣∣∣
}

=
min(nd, ns)

2 ln(2)

∫ ∞

0

ln(1 + ρλ) f(λ) dλ (6.5)

where Ũ 2 = E†
2 U 2, λ denotes the non-zero arbitrary eigenvalue of Ũ

†
2V

†(σ2Ind
+

V V †)−1 V Ũ 2 and f(λ) is the PDF of λ. For this case, nd < 2nr, the matrix

Ũ
†
1Ũ 1 is pseudo-Wishart [70]. Let Ũ

†
1Ũ 1 have ordered non-zero eigenvalues, ν1 >

. . . > νnd
> 0. The density of the unordered nonzero eigenvalues of Ũ

†
1Ũ 1 for the

pseudo-Wishart case is given in [67] for the case when all of the diagonal elements

of matrix, D2, are distinct. However, in this situation the diagonal elements of the

matrix D2 in (6.1) are not all distinct. When D2 does not have all distinct values,

the PDF, f(ν), of the unordered nonzero eigenvalues of Ũ
†
1Ũ 1 can be obtained by

using the identities on multiple derivatives given in Sec. 5.2.1. These derivatives are

then used to derive f(ν) using the method given in Lemma 2 of [48]. The lemma

basically explains a derivation of f(ν) for the general case when D2 does not have

all distinct values. With this approach, f(ν) can be calculated as

f(ν) =

∏nd

k<p(νp − νk) |K|
nd! Γnd

(nd)Γnr(nr)Γnr(nr)(w2 − w1)nr
2 . (6.6)
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In (6.6), Γns(nd) =
∏ns

k=1 Γ(nd − k + 1) and K is a 2nr × 2nr matrix with entries

given as

Ki,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr, j = 1, . . . , 2nr − nd

e−νj−2nr+nd
/w1

×∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×νk
j−2nr+nd

wnr−nd+i−k−1
1 , j = 2nr − nd + 1, . . . , 2nr

(j − 2nr + i)2nr−i wj−2nr+i−1
2 , i = nr + 1, . . . , 2nr,

j = 1, . . . , 2nr − nd

e−νj−2nr+nd
/w2

×∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×νk
j−2nr+nd

w−nd+i−k−1
2 , j = 2nr − nd + 1, . . . , 2nr

,

(6.7)

where w1 = σ2α2/a2
1 and w2 = σ2β2/a2

2. Let P = V †(σ2Ind
+ V V †)−1V , where V

is defined in (6.5). Then for nd < 2nr, P can be given as

P = diag



µ1, . . . , µnd

, 0, . . . , 0︸ ︷︷ ︸
2nr−nd



 , (6.8)

where µk = νk

νk+σ2 . Then, the capacity can also be expressed as

C =
1

2
E

{
log2

∣∣∣Ins + ρÛ
†
2P̂ Û 2

∣∣∣
}

, (6.9)

where Û 2 ∈ Cnd×ns has i.i.d ZMCSCG entries with unit variance and P̂ = diag {µ1,

. . . , µnd
}. Note that P̂ and Û 2 are simply re-sized versions of P and Ũ 2. The matrix

P̂
1/2

Û 2Û
†
2P̂

1/2
is central complex Wishart when nd 6 ns and central complex

pseudo-Wishart when nd > ns [50]. Hence, the density function, f(λ) in (6.5) will

be different for the cases nd 6 ns and nd > ns. Therefore, the ergodic capacity

for the system needs to be evaluated separately for those cases, and they are given

below. The derivation of f(λ) and the capacity expressions for the different cases

given below involves a complex series of steps. This is given in a fairly dense form.
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However an overview of the results is given in Sec. 6.4 to clarify the application of

the relevant formulae.

6.2.1 Capacity Analysis for the Case nd 6 ns

For the case nd 6 ns, the matrix P̂
1/2

Û 2Û
†
2P̂

1/2
is central complex Wishart [50].

Then, using the result in [67] for the PDF of the non-zero arbitrary eigenvalue

for the Wishart case, the conditional PDF of a non-zero arbitrary eigenvalue of

P̂
1/2

Û 2Û
†
2P̂

1/2
can be obtained as

f(λ|µ) =

∑nd

r=1

∣∣G1
∣∣

nd Γnd
(ns)

∏nd

k=1 µns−nd+1
k

∏nd

k<p(µp − µk)
. (6.10)

In (6.10), G1 is a nd × nd matrix with entries

G1
i,j =





λns−nd+i−1e−λ/µj , for i = r, j = 1, . . . , nd

Γ(ns−nd+i)

µ
nd−ns−i

j

, for i 6= r, j = 1, . . . , nd

. (6.11)

Then the conditional PDF f(λ|ν) can be obtained by substituting µk =
(

νk

σ2+νk

)
in

(6.10). Thus the joint PDF f(λ, ν) = f(ν)f(λ|ν) can be written as

f(λ, ν) =
1

nd nd! σnd(nd−1) Γnd
(ns) Γnd

(nd) Γnr(nr) Γnr(nr) (w2 − w1)n2
r

×
nd∑

r=1

nd∏

k=1

(σ2 + νk)
ns

νns−nd+1
k

|K|
∣∣G1

∣∣

, C0

nd∑
r=1

nd∏

k=1

ξ(νk) |K|
∣∣G1

∣∣ . (6.12)

Density f(λ) can then be found by integrating over all νk by using the method

described in Lemma 2 of [32] as,

f(λ) = C0

nd∑
r=1

∫ ∞

0

. . .

∫ ∞

0

nd∏

k=1

ξ(νk) |K|
∣∣G1

∣∣ dν1 . . . dνnd

= C0 nd!︸ ︷︷ ︸
C1

nd∑
r=1

|Ψ| (6.13)

where

C1 =
1

nd σnd(nd−1) Γnd
(ns) Γnd

(nd) Γnr(nr) Γnr(nr) (w2 − w1)n2
r
. (6.14)
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In (6.13), Ψ is a 2nr × 2nr matrix with entries given as

Ψi,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr, j = 1, . . . , 2nr − nd

(j − 2nr + i)2nr−i wj−2nr+i−1
2 , i = nr + 1, . . . , 2nr,

j = 1, . . . , 2nr − nd

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1 Γ(ns + j − 2nr) j = 2nr − nd + 1, . . . , 2nr and

×IA(j, k, w1), j 6= r + 2nr − nd

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2 Γ(ns + j − 2nr) j = 2nr − nd + 1, . . . , 2nr and

×IA(j, k, w2), j 6= r + 2nr − nd

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1 λns+j−2nr−1 j = 2nr − nd + 1, . . . , 2nr and

×IB(k, w1), j = r + 2nr − nd

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2 λns+j−2nr−1 j = 2nr − nd + 1, . . . , 2nr and

×IB(k, w2), j = r + 2nr − nd

,

(6.15)

where

IA(j, k, w) =

2nr−j∑
p=0

(2nr − j)!

p!(2nr − j − p)!
σ2(2nr−j−p)wnd+j+k+p−2nrΓ(nd + j + k + p− 2nr),

(6.16)

IB(k, w) =
ns∑

p=0

ns!

p!(ns − p)!
σ2(ns−p)e−λ2(λσ2w)(nd+p−ns+k)/2Knd+p−ns+k(2

√
λσ2/w),

(6.17)
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and Kx is the modified Bessel function of the second kind. Finally, using the Laplace

expansion of (6.13), the density function of the non-zero arbitrary eigenvalue of

Ũ
†
2V

†(σ2Ind
+ V V †)−1V Ũ 2 is calculated as

f(λ) = C1

2nr∑
i=1

nd∑
j=1

(−1)i+j+2nr−nd
∣∣Qi,j+2nr−nd

∣∣ Aλ(i, j). (6.18)

In (6.18), Qk,l denotes the (k, l)th minor of Q with elements given as

Qi,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr,

j = 1, . . . , 2nr − nd

(j − 2nr + i)2nr−i wj−2nr+i−1
2 , i = nr + 1, . . . , 2nr,

j = 1, . . . , 2nr − nd

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

wnr−nd+i−k−1
1 Γ(ns + j − 2nr)IA(j, k, w1), j = 2nr − nd + 1, . . . , 2nr

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

w−nd+i−k−1
2 Γ(ns + j − 2nr)IA(j, k, w2), j = 2nr − nd + 1, . . . , 2nr

,

(6.19)

and Aλ(i, j) is given as

Aλ(i, j) =





∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k

wnr−nd+i−k−1
1 λns+j−nd−1IB(k, w1), for i = 1, . . . , nr

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k

w−nd+i−k−1
2 λns+j−nd−1IB(k, w2), for i = nr + 1, . . . , 2nr

.

(6.20)

Now, substituting (6.18) into (6.5), the ergodic capacity of the system for the

case nd 6 ns can be finally written as

C =
nd C1

2 ln(2)

2nr∑
i=1

nd∑
j=1

(−1)i+j+2nr−nd
∣∣Qi,j+2nr−nd

∣∣
∫ ∞

0

ln(1 + ρλ) Aλ(i, j) dλ, (6.21)

where C1, Q and Aλ(i, j) are given in (6.14), (6.19) and (6.20), respectively.
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6.2.2 Capacity Analysis for the Case nd > ns

For the case nd < ns, the matrix P̂
1/2

Û 2Û
†
2P̂

1/2
is central complex pseudo-Wishart

[50]. Then using the result in [67] for the PDF of the non-zero arbitrary eigenvalue

for the pseudo-Wishart case, the conditional PDF of a non-zero arbitrary eigenvalue

of P̂
1/2

Û 2Û
†
2P̂

1/2
can be obtained as

f(λ|µ) =
1

nsΓns(ns)
∏nd

k=1 µns−nd+1
k

∣∣µj−1
i

∣∣
ns∑

r=1

∣∣∣G̃
∣∣∣

=
1

nsΓns(ns)
∏nd

k=1 µns−nd+1
k

∏nd

k<p(µp − µk)

ns∑
r=1

∣∣∣G̃
∣∣∣ . (6.22)

In (6.22), G̃ is a nd × nd matrix with entries

G̃i,j =





µns−nd+i
j , for i = 1, . . . , nd − ns, j = 1, . . . , nd

λns−nd+i−1e−λ/µj , for i > nd − ns, and i = nd − ns + r, j = 1, . . . , nd

Γ(i−nd+ns)

µ
nd−ns−i

j

, for i > nd − ns, and i 6= nd − ns + r, j = 1, . . . , nd

.

(6.23)

Then, the conditional PDF f(λ|ν) can be obtained by substituting µk =
(

νk

σ2+νk

)

into (6.22). Thus the joint PDF f(λ, ν) = f(ν)f(λ|ν) can be written as

f(λ, ν) =
1

ns nd! σnd(nd−1) Γns(ns) Γnd
(nd)

∏nr

k=1 k!
∏nr

k=1 k! (w2 − w1)n2
r

×
ns∑

r=1

nd∏

k=1

(σ2 + νk)
ns

νns−nd+1
k

|K|
∣∣∣G̃

∣∣∣

, C01

ns∑
r=1

nd∏

k=1

ξ(νk) |K|
∣∣∣G̃

∣∣∣ . (6.24)

By integrating over all νk, f(λ) can be found by using the method described in

Lemma 2 of [32] as,

f(λ) = C01

ns∑
r=1

∫ ∞

0

. . .

∫ ∞

0

nd∏

k=1

ξ(νk) |K|
∣∣∣G̃

∣∣∣ dν1 . . . dνnd
= C01nd!︸ ︷︷ ︸

C2

ns∑
r=1

∣∣∣Ψ̃
∣∣∣ (6.25)

where

C2 =
1

ns σnd(nd−1) Γns(ns) Γnd
(nd)

∏nr

k=1 k!
∏nr

k=1 k! (w2 − w1)n2
r
. (6.26)
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In (6.25), Ψ̃ is a 2nr × 2nr matrix with entries given as

Ψ̃i,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr, j = 1, . . . , 2nr − nd

(j − 2nr + i)2nr−i wj−2nr+i−1
2 , i = nr + 1, . . . , 2nr,

j = 1, . . . , 2nr − nd

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1 IA(j, k, w1), j = 2nr − nd + 1, . . . , 2nr − ns

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2 IA(j, k, w2), j = 2nr − nd + 1, . . . , 2nr − ns

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1 Γ(ns + j − 2nr) j > 2nr − ns,

×IA(j, k, w1), and j 6= 2nr − ns + r

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2 Γ(ns + j − 2nr) j > 2nr − ns,

×IA(j, k, w2), and j 6= 2nr − ns + r

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1 λns+j−2nr−1 j > 2nr − ns,

×IB(k, w1), and j = 2nr − ns + r

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2 λns+j−2nr−1 j > 2nr − ns,

×IB(k, w2), and j = 2nr − ns + r

,

(6.27)

where IA(j, k, w) and IB(k, w) are given in (6.16) and (6.17), respectively. Then,

using the Laplace expansion of (6.25), the density function of the non-zero arbitrary
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eigenvalue of Ũ
†
2V

†(σ2Ind
+ V V †)−1V Ũ 2 for the case nd > ns is calculated as

f(λ) = C2

2nr∑
i=1

ns∑
j=1

(−1)i+j+2nr−ns

∣∣∣Q̃i,j+2nr−ns

∣∣∣ Ãλ(i, j). (6.28)

In (6.28), Q̃x,y denotes the (x, y)th minor of Q̃ with elements given in (6.29) and

Q̃i,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr, j = 1, . . . , 2nr − nd

(j − 2nr + i)2nr−i i = nr + 1, . . . , 2nr,

×wj−2nr+i−1
2 , j = 1, . . . , 2nr − nd

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1

×IA(j, k, w1), j = 2nr − nd + 1, . . . , 2nr − ns

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2

×IA(j, k, w2), j = 2nr − nd + 1, . . . , 2nr − ns

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k i = 1, . . . , nr,

×wnr−nd+i−k−1
1

×Γ(ns + j − 2nr)IA(j, k, w1), j > 2nr − ns

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k i = nr + 1, . . . , 2nr,

×w−nd+i−k−1
2

×Γ(ns + j − 2nr), IA(j, k, w2) j > 2nr − ns

,

(6.29)

Ãλ(i, j) is defined as

Ãλ(i, j) =





∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k

×wnr−nd+i−k−1
1 λj−1IB(k, w1), for i = 1, . . . , nr

∑2nr−i
k=0

(2nr−i)!
k!(2nr−i−k)!

(−nd + i)2nr−i−k

×w−nd+i−k−1
2 λj−1IB(k, w2), for i = nr + 1, . . . , 2nr

. (6.30)
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Now, substituting (6.28) in (6.5), the ergodic capacity of the system for the case

nd > ns can be finally written as

C =
ns C2

2 ln(2)

2nr∑
i=1

ns∑
j=1

(−1)i+j+2nr−ns

∣∣∣Q̃i,j+2nr−ns

∣∣∣

×
∫ ∞

0

ln(1 + ρλ) Ãλ(i, j) dλ, (6.31)

where C2, Q̃ and Ãλ(i, j) are given in (6.26), (6.29) and (6.30), respectively.

Note that the final capacity result requires a single numerical integral as in

Chapter 5. This is undesirable, but is to be expected as capacity results for simpler

MIMO relays also involve one numerical integral.

Special Case: Ergodic Capacity of a (1,1,1) System

For the special case of a (1,1,1) system, the capacity expression given in (6.21)

reduces to

C =

∫ ∞

0

− ln(1 + ρλ)e−λ

ln(2)(w2 − w1)

(
σ2K0(2

√
λσ2/w1) + (λσ2w1)

1/2K1(2
√

λσ2/w1)
)

dλ

+

∫ ∞

0

ln(1 + ρλ)e−λ

ln(2)(w2 − w1)

(
σ2K0(2

√
λσ2/w2) + (λσ2w2)

1/2K1(2
√

λσ2/w2)
)

dλ.

(6.32)

Note that even for this special case, a closed form expression is difficult to obtain

and so the capacity result requires numerical integration.

The ergodic capacity analysis we have just derived is only valid when γ2 = δ2,

but when γ2 6= δ2, an approximation, a lower bound and an upper bound for the

capacity can be obtained by replacing γ and δ by γ+δ
2

, min(γ, δ) and max(γ, δ),

respectively. These approximations and bounds are quite accurate unless γ2 À δ2

or γ2 ¿ δ2. However, in these cases it is usually preferable to use a single relay

system. Hence the analysis is useful for most cases of interest. This is shown in

more detail in Sec. 6.5.

Using the results given in (6.21) and (6.31), the ergodic capacity for a single

MIMO relaying system can be obtained as a special case of this more general result.

The results for the single MIMO relaying system are given in the following section.
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6.3 Ergodic Capacity for a Single Relaying Sys-

tem

The ergodic capacity for a single MIMO relaying system can be obtained from the

results given in (6.21) and (6.31). By letting β2 = 0 (removing the link between the

source and destination through R2) in (6.21) and (6.31), the capacity for a single

relaying system can be calculated. For the case nd 6 ns < 2nr, setting β2 = 0 in

(6.21) gives the capacity of a single relaying system as

C =
ndC1

2 ln(2)

2nr∑
i=1

nd∑
j=1

(−1)i+j+2nr−nd
∣∣Qi,j+2nr−nd

∣∣

×
∫ ∞

0

ln(1 + ρλ) Aλ(i, j) dλ. (6.33)

In (6.33), Q and Aλ(i, j) have much simpler results than (6.19), (6.20) and they are

given in (6.34) and (6.35), respectively. Similarly, the capacity for a single relaying

system for the case nd > ns can be calculated using (6.31).

6.4 Overview of Analysis

The results derived above involve a complex series of steps. Hence, this subsection

briefly outlines what we have done and the results derived in this chapter. The main

objective of this chapter is to analyze the ergodic capacity of an AF MIMO two-

hop two-relay system without the direct link. We have derived the ergodic capacity

expressions for different situations from the PDF of the arbitrary eigenvalue. Our

derived results are summarized in Fig. 6.2.

6.5 Results and Discussion

We now validate these results by using Monte Carlo simulations. Here we set

Pt = Pr = σ2 = 1, and thus the relays’ amplification factors are given by a1 =
√

nr(γ2 + 1) and a2 =
√

nr(δ2 + 1). We choose the value of ax so that on average
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Qi,j =





(j − nr + i)nr−i wj−nr+i−1
1 , i = 1, . . . , nr, j = 1, . . . , 2nr − nd

0, i = nr + 1, . . . , 2nr,
j = 1, . . . , 2nr − nd,
and i 6= 2nr + 1− j

(j − 2nr + i)2nr−i, i = nr + 1, . . . , 2nr,
j = 1, . . . , 2nr − nd,
and i = 2nr + 1− j

∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k

×wnr−nd+i−k−1
1 Γ(ns + j − 2nr) i = 1, . . . , nr,

×IA(j, k, w1), j = 2nr − nd + 1, . . . , 2nr

0, i = nr + 1, . . . , 2nr,
j = 2nr − nd + 1, . . . , 2nr

,

(6.34)

where IA(j, k, w) is given in (6.16).

Aλ(i, j) =





∑nr−i
k=0

(nr−i)!
k!(nr−i−k)!

(nr − nd + i)nr−i−k

×wnr−nd+i−k−1
1 λns+j−nd−1IB(k, w1), for i = 1, . . . , nr

0, for i = nr + 1, . . . , 2nr

,

(6.35)

where IB(k, w) is given in (6.17).

the total transmitted power from a relay is 1 (Pr = 1). First, the ergodic capacity

of the system shown in Fig. 6.1 is given for different system variables in Fig. 6.3.

The analytical results for nd > ns are based on (6.21) and for nd > ns are based on

(6.31). The analytical results show a perfect agreement with the simulation results.

As mentioned before, the capacity expressions derived in this chapter can also be

used for a single relay system by the simple expedient of setting β = 0. Derivations

for this case were given in Sec. 6.3. The results are shown in Fig. 6.4 for both

two relay and single relay systems. The results are given for γ2=δ2=α2≈ β2. The

reason that results are not reported for exactly α2= β2 is that these results have a
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Ergodic capacity 

derivation 

Ergodic capacity 
expression defined in 

terms of f (λ) in (6.5) 
 

f (λ) computed for nd < 2nr 
and nd ≤ ns in (6.18) 

 

SPECIAL CASE 

The ergodic capacity for a 

single relay system (nd < 2nr 

and nd ≤ ns) is derived from 

(6.21) in (6.34) 

 

f (λ) computed for nd < 2nr 
and nd > ns in (6.30) 

 

Final ergodic capacity 
expression for nd < 2nr and 

nd ≤ ns given in (6.21) 

Final ergodic capacity 
expression for nd < 2nr and 

nd > ns given in (6.33) 

Figure 6.2: Overview of the results derived in Chapter 6.

numerical problem at the point α2= β2. If α2= β2 was an important special case

then a simpler result could be derived for the case α2= β2 by setting α = β + ε

and letting ε → 0. However, α 6= β with probability 1, so the case where α = β

does not seem to merit closer attention. We observe excellent agreement between

the simulations and analysis of the single relay system. We see that the system with

two relays provides better capacity compared to a single relay system, due to extra

diversity.

The results derived in this chapter assume γ2 = δ2. However, when γ2 6= δ2, an

approximation, a lower bound and an upper bound for the capacity can be obtained
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Figure 6.3: Mean capacity for different system sizes and link gains (γ2=δ2=10dB,
α2=β2 - 4 dB and Pt = Pr = σ2 = 1).
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Figure 6.4: Relay system capacity with one and two relays (γ2=δ2=α2≈ β2 and
Pt = Pr = σ2 = 1).
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Figure 6.5: Capacity bounds and approximations for a relaying system with two
relays (γ2=α2, β2=α2 − 5 dB, δ2=γ2 + 5 dB, Pt = Pr = σ2 = 1 and (5, 4, 4)).

as mentioned before. Figure 6.5 shows the capacity and bounds for the relaying

system with two relays when γ2 6= δ2. The results show that the approximation,

lower bound and upper bound for the capacity are in good agreement with the

simulated results.

To show that these approximations and bounds are quite accurate unless γ2 À δ2

or γ2 ¿ δ2. Consider the results given in Figs. 6.6 and 6.7. Figures 6.6 and

6.7 show the capacity and bounds for the relaying system with two relays when

γ2 = δ2 − 5dB and γ2 = δ2 − 10dB, respectively. In both figures the results of a

single relaying system are shown as a reference. When γ2 is close to δ2 (Fig. 6.6), the

approximation, lower bound and upper bound for the capacity are in good agreement

with the simulated results and the performance of a single relaying system is weaker

than the two relay relaying system. However, when γ2 is some distance away from

δ2 (Fig. 6.7), the approximation and the bounds are loose and the performance of a

single relaying system is better than the two relay relaying system. This shows that

the two relay based relaying system has higher performance when γ2 ≈ δ2 and when
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Figure 6.6: Capacity bounds and approximations for a relaying system with two
relays (γ2=α2, β2=α2 − 1 dB, δ2=γ2 − 5 dB, Pt = Pr = σ2 = 1 and (5, 4, 4)). Note:
results of a single relay system (β2 = 0) are given as a reference

γ2 À δ2 or γ2 ¿ δ2 a single relay system is preferred. Furthermore, this also shows

that the approximation and bounds given are valid unless γ2 À δ2 or γ2 ¿ δ2.

Hence the analytical results are useful when a two relay system is preferred, and

when a single relay is preferred the corresponding analysis can be used.

The ergodic capacity for a single relaying system without the direct link was

derived in Secs. 6.3 and 5.2.3 by using different approaches. The analytical results

for single relaying systems produced in both the chapters are given in Fig. 6.8. The

SNR values P1 and P2 in Chapter 5 correspond to γ2 and α2, respectively. The

results from both the chapters agree well implying that both approaches give the

same results as expected.
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Figure 6.7: Capacity bounds and approximations for a relaying system with two
relays (γ2=α2, β2=α2−1 dB, δ2=γ2−10 dB, Pt = Pr = σ2 = 1 and (5, 4, 4)). Note:
results of a single relay system (β2 = 0) are given as a reference
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Figure 6.8: Ergodic capacity results for single relaying system using results from
Chapters 5 and 6 (γ2=α2, and Pt = Pr = σ2 = 1).
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6.6 Summary

In this chapter we have derived an exact expression for the capacity of the AF MIMO

two-hop two relay system shown in Fig. 6.1. We first developed an expression for

the probability density function of the arbitrary eigenvalue of the system. Then,

using this result, we found a closed-form expression for the ergodic capacity of the

system. We verified the analysis using Monte Carlo simulation and demonstrated

perfect agreement between our analysis and simulations. We have also shown that

these results can be used to obtain the capacity for a single relay system by setting

appropriate parameters.

We also compared relaying systems using one and two relays. Our results verify

the capacity gain of relaying systems with two relays due to the extra diversity

compared to a single relaying system.

To derive our equations, we assumed γ2 = δ2. However, we have found that when

γ2 6= δ2, an approximation, a lower bound and an upper bound for the capacity can

be obtained by replacing γ and δ by γ+δ
2

, min(γ, δ) and max(γ, δ), respectively.

These approximations and bounds are quite accurate unless γ2 À δ2 or γ2 ¿ δ2,

and in these cases a single relay system is preferred.

As a special case, we have derived the ergodic capacity for a single relaying system

without the direct link as we did in Chapter 5 using a different approach. We have

compared the results from both chapters and have shown that both approaches

generate the same results as expected.



Chapter 7

Relay Amplification in MIMO

Two-Hop Relaying Systems

In this chapter we compare three types of relay amplification methods in MIMO

amplify-and-forward (AF) relaying systems. We compare these methods in terms of

system capacity performance for three different types of AF MIMO two-hop relay-

ing systems. Furthermore, we explain the capacity behavior using the cumulative

distribution functions of the signal-to-noise ratios of the amplification methods.

In most of the literature on wireless relaying, the relay terminal amplifies the

received signal from the source by using the second order statistics of the source

to relay channel [1, 29] or by using instantaneous knowledge of the source to relay

channel [71]. In other work, the relay terminal amplifies the received signal using an

optimized gain matrix [23, 24, 30]. However, there seems to be very little work that

compares different amplification methods in a common framework. In this chapter

we compare three types of relay amplification methods:

• amplification using the second order statistics of the source to relay channel

(average amplification);

• amplification using instantaneous knowledge of the source to relay channel (in-

stantaneous channel amplification); and

137
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Figure 7.1: MIMO relay network topologies. (a) Topology 1. (b) Topology 2. (c)
Topology 3

• amplification using the instantaneous received signal power at the relay (instan-

taneous power amplification).

In these comparisons, the mean capacity of three different AF MIMO two-hop re-

laying systems are evaluated based on the above amplification methods. Note that

the results are simulation-based due to the difficulty in obtaining capacity results

for the two instantaneous methods. For the average amplification case, capacity

results are available [69, 72, 73].

7.1 System Model

The three relay network topologies we consider are shown in Fig. 7.1. The source (S),

relay (Rx), and destination (D) terminals are equipped with ns, nr and nd antennas

respectively. For simplicity, we assume that all the relaying terminals have equal

number of antennas. During the first hop, the source terminal transmits (broadcasts)

to the relay(s) or to the relay(s) and destination. In the second hop, the relay

terminal(s) transmit the amplified signal from the first hop to the destination. We

assume that the normalized channel matrices for the source-to-destination (S→D),

source-to-relay (S→R1, S→R2), and relay-to-destination (R1→D, R2→D) links are

given by H0 ∈ Cnd×ns , H11,H21 ∈ Cnr×ns , and H12,H22 ∈ Cnd×nr , respectively.

We also assume that the channels are frequency-flat and the entries of the channel

matrices are ZMCSCG random variables of unit variance. Furthermore, we assume

that the relay terminal assists in the communication with the destination terminal
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using AF mode. In this mode, without decoding or demodulation, the relay terminal,

Rx, amplifies the received observation corresponding to the signal from the source

by a factor, ax, and retransmits it to the destination.

Firstly, we consider topology 1 in Fig. 7.1. In this scenario no signal is received

by the destination during the first hop. The received signal at the destination after

the two hops is given by:

yTop 1 = α γ a1 H12H11x + α a1 H12n1 + n3. (7.1)

Then, defining A1 = α γa1 H12H11 and B1 = (σ2
3 Ind

+ α2 a2
1 σ2

1 H12H
†
12)

1/2, (7.1)

can be written as

yTop 1 = A1x + B1v1, (7.2)

where v1 is a Gaussian noise vector and will be explained later.

In topology 2, the destination receives information during the first hop as well.

In this case the received signal at the destination after the two hops is given by:

yTop 2 =


 τH0

αγa1H12H11


 x +


 n0

αa1H12n1 + n3


 . (7.3)

Again, (7.3) can also be written in the same form as (7.2):

yTop 2 = A2x + B2v2, (7.4)

where

A2 =


 τH0

αγa1H12H11


 , (7.5)

and

B2 =


 σ2

0Ind
0

0 σ2
1α

2a2
1H12H

†
12 + σ2

3Ind




1/2

. (7.6)

Similarly, the received signal at the destination after the two hops in topology 3

is given by

yTop 3 =(α γ a1 H12H11 + β δ a2 H22H21)x

+ α a1 H12n1 + β a2 H22n2 + n3. (7.7)
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Then, defining

A3 = α γ a1 H12H11 + β δ a2 H22H21, (7.8)

and

B3 = (σ2
3 Ind

+ α2 a2
1 σ2

1 H12H
†
12 + β2 a2

2 σ2
2 H22H

†
22)

1
2 , (7.9)

equation (7.7) can also be given as:

yTop 3 = A3x + B3v3. (7.10)

In (7.1) - (7.10), the parameters τ 2, γ2, δ2, α2 and β2 are the average powers of the

S→D, S→R1, S→R2, R1→D and R2→D links, respectively, taking into account the

different path loss and shadowing effects over the links. The variables n1, n2, n3 and

n0 are the noise vectors at R1, R2, D (second-hop) and D (first-hop) respectively,

and x is the vector of transmit symbols. The transmit symbols are assumed to

be i.i.d. with E{xx†} = ρIns . The noise at the relays and destination is modeled

as ZMCSCG with E{n0n
†
0} = σ2

0Ind
, E{n1n

†
1} = σ2

1Inr , E{n2n
†
2} = σ2

2Inr , and

E{n3n
†
3} = σ2

3Ind
. Finally, v1, v2 and v3 are normalized complex Gaussian noise

vectors, which have Ind
, I2nd

and Ind
, respectively, as their covariance matrices.

The instantaneous capacity expressions for the system topologies are given fol-

lowing [23] as below, (the factor 1/2 accounts for the fact that the information is

conveyed to the destination terminal over two time slots [1]). For topology 1 the

instantaneous capacity is

C1 =
1

2
log2

∣∣∣Ind
+ ρA1A

†
1(B1B

†
1)
−1

∣∣∣ . (7.11)

For topology 2 we have

C2 =
1

2
log2

∣∣∣I2nd
+ ρA2A

†
2(B2B

†
2)
−1

∣∣∣ , (7.12)

and for topology 3

C3 =
1

2
log2

∣∣∣Ind
+ ρA3A

†
3(B3B

†
3)
−1

∣∣∣ . (7.13)
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In order to evaluate the means and variances of the capacities of the system

topologies under different amplification methods, we restrict the total power from

each relay to be Pr. Under this condition, evaluation of the amplification factor of

the relays, ax, is given below.

7.1.1 Average Amplification

The signal received by the relay, R1, during the first hop can be given as:

yR1
= γH11x + n1. (7.14)

Then, using the power constraint, E{‖a1yR1
‖2} = Pr, and assuming only second

order statistics are known, the amplification factor a1 can be calculated as

a1 =

√
Pr

nr(ρ γ2 ns + σ2
1)

, (7.15)

where the expectation is taken over H11, x and n1. Then, using a similar procedure,

the amplification factor a2 can be calculated as

a2 =

√
Pr

nr(ρ δ2 ns + σ2
2)

. (7.16)

7.1.2 Instantaneous Channel Amplification

As before, using (7.14) and the power constraint, E{‖a1yR1
‖2} = Pr, and assuming

that instantaneous knowledge of the source to relay link, (S→R1), is known at R1,

the amplification factor a1 can be calculated as

a1 =

√
Pr

ρ γ2 tr{H†
11H11}+ nr σ2

1

, (7.17)

where the expectation is only taken over x and n1. Again, using a similar procedure,

the amplification factor a2 can be calculated as

a2 =

√
Pr

ρ δ2 tr{H†
21H21}+ nr σ2

2

. (7.18)
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7.1.3 Instantaneous Power Amplification

In this method, the relays use the instantaneous power of the received signal at the

relay for amplification. Using (7.14) and the power constraint, the amplification

factor a1 in this case can be calculated as

a1 =

√
Pr

‖γH11x + n1‖2
. (7.19)

The amplification factor, a2, can be determined using a similar procedure as

a2 =

√
Pr

‖δH21x + n2‖2
. (7.20)

Looking at the amplification methods given above, the average amplification

method seems to be the simplest method to implement for the relaying terminal,

as it only requires the second order statistics of the source to relay link. In the

instantaneous channel amplification method, the relay terminal is required to es-

timate the source to relay link. This would add extra complexity to the relaying

terminal compared to the average amplification method. The instantaneous power

amplification method may be simple for the relaying terminal but it has some inher-

ent problems. The instantaneous power amplification method would lead to exactly

the same relay transmission power, Pr. Hence, although the received signal at the

relaying terminal has different power levels depending on the modulation type used,

the transmitting signal from the relay has the same power level. This would cause

a problem at the destination terminal for non-constant amplitude modulation types

such as 4PAM and 16QAM. Hence, if this scheme is to be implemented, the relay

terminal should send the amplification factor used to the destination terminal with

each symbol. This additional information needed at the destination would create

enormous overhead in the instantaneous power amplification method compared to

the other methods. Hence, this approach is not feasible for non-constant amplitude

constellations and is mainly of interest as a type of upper bound.
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7.2 Simulation Results and Discussion

Using Monte Carlo simulations we now compared the instantaneous capacity of the

system topologies given in Fig. 7.1 for the three amplification methods. We set

ρ = 1/ns and Pr = 1. Furthermore, we let σ2
0 = σ2

1 = σ2
2 = σ2

3 = 1, implying that

the average signal-to-noise ratio (SNR) of the links (S→D), (S→R1), (S→R2),

(R1→D) and (R2→D) are τ 2, γ2, δ2, α2 and β2, respectively. We represent the

number of antennas used in the system by the 3-tuple (ns, nr, nd).
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Figure 7.2: Mean capacity of the system topologies under different amplification
methods for the system parameters: (3, 2, 3), τ 2 = α2 = β2 = 10dB and γ2 = δ2.

Figures 7.2 and 7.3 show the mean capacity of the system topologies under the

three amplification methods. In Figure 7.2 we plot the mean capacity when the

source and relays have the same propagation conditions to the destination. Like-

wise, in Fig. 7.3 we show the mean capacity when the relays have better propa-

gation conditions to the destination than the source to destination link. In the

figures, ‘avg’, ‘insCh’ and ‘insPo’ stand for the average, instantaneous channel and

instantaneous power amplification methods, respectively. The results from both fig-
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Figure 7.3: Mean capacity of the system topologies under different amplification
methods for the system parameters: (2, 2, 2), α2 = β2 = τ 2 + 8dB = 10dB and
γ2 = δ2.

ures show that for larger SNRs the instantaneous power amplification method has

a higher mean capacity in all the system topologies compared to the other two am-

plification methods. For smaller SNRs, the mean capacity of all the amplification

methods converges to the same level in all the system topologies. Also, for larger

SNRs the instantaneous channel amplification method is slightly better than the

average amplification method. Thus, a better system capacity can be obtained by

using the instantaneous power amplification method. However, as explained before,

to implement the instantaneous power amplification method requires additional in-

formation at the destination and would create enormous overhead compared to the

other methods.

To explain the mean capacity behaviors of the amplification methods, we consider

system topology 1 with dimension (ns, 1, 1). The mean capacity for this scenario is

given in Fig. 7.4. Again, the same mean capacity behavior is seen as in Figs. 7.2

and 7.3. As in (7.11), the capacity of the system depends on the SNR of the system,
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Figure 7.4: Mean capacity of system topology 1 under different amplification meth-
ods for the system parameters: (ns, 1, 1), α2 = 10dB.

the scalar ρA1A
†
1(B1B

†
1)
−1. The cumulative distribution functions (CDFs) of the

SNRs for the three amplification methods are calculated using the analysis in Sec.

7.3 for this system configuration. The analytical CDFs of the SNRs given in Sec. 7.3

are plotted in Fig. 7.5 with their simulated values for α2 = 10dB, and γ2 = 20dB.

The simulated values agree well with the analytical values.

The results show that the average amplification method has a higher probability

of low SNR values compared to the other amplification methods, hence, the mean

capacity of the average amplification method is lower compared to the other meth-

ods. Note that the average amplification method also has higher SNRs for ns = 1,

but the gains of the higher SNR region are overshadowed by the losses in the low

SNR region due to the logarithmic relationship between capacity and SNR. Fur-

thermore, the instantaneous power amplification method has slightly higher SNR

values at the top end when ns = 1 and much higher SNR values at the top end when

ns = 2 compared to the instantaneous channel amplification method. Hence, the

mean capacity of the instantaneous power amplification method is slightly higher
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than that of the instantaneous channel amplification method. Thus, the CDFs of

the SNRs can be used to explain the mean capacity behaviors of the systems.
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Figure 7.5: CDFs of the SNRs of system topology 1 under different amplification
methods for the system parameters: (ns, 1, 1), α2 = 10dB, and γ2 = 20dB.

The mean capacity results follow a simple pattern with the instantaneous power

amplification giving the highest values as supported by our SNR analysis. The

capacity variance has two types of behavior. For the (1, 1, 1) system the average

amplification method has the highest variance as shown in Figs. 7.5 - 7.6. This may

be unexpected as the amplification factors are constant for the average amplifica-

tion and hence there are fewer random variables involved in the capacity. However,

in the (1, 1, 1) case the extra random variables in the amplification factors for the

instantaneous power amplification are scalars in the denominator of (7.19) - (7.20).

These act to control the variability in the strength of the S→R link resulting in

lower variability. However, when there are multiple antennas at the source or re-

lay then the denominators in (7.19) - (7.20) have cross-product terms between the

elements of H11 or H21. The variation caused by these extra variables exceeds

any stabilizing effect and so the capacity variance is higher for the instantaneous
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power amplification whenever ns > 1 or nr > 1. This is shown in Fig. 7.7 and the

conclusion is verified by the SNR CDFs in Fig. 7.5.
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Figure 7.6: Capacity variance of the system topologies under different amplification
methods for the system parameters: (1, 1, 1), τ 2 = α2 = β2 = 10dB and γ2 = δ2.

For high SNRs, we have shown that the instantaneous power amplification

method has a slightly higher mean capacity in all the system topologies compared

to the other two amplification methods. However, we also have seen that the in-

stantaneous power amplification method is more unstable compared to the other

amplification methods when the number of antennas in the relay and/or the source

is more than one. In addition, the instantaneous power amplification method has

other problems as explained before. Therefore, it is more important to look in detail

at the average and instantaneous channel amplification methods.

Figures 7.8 and 7.9 show the percentage difference between the instantaneous

channel amplification method compared to the average amplification in terms of

the mean capacity of the systems for different link gains. The results show a small

difference in mean capacity for the two amplification methods. The average am-
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Figure 7.7: Capacity variance of the system topologies under different amplification
methods for the system parameters: (4, 4, 4), τ 2 = α2 = β2 = 10dB and γ2 = δ2.

plification has a higher mean capacity at lower SNRs and a lower mean capacity

at high SNRs compared to the instantaneous channel amplification method. Thus,

the instantaneous channel amplification method has almost no advantage in terms

of mean capacity but its capacity is less variable compared to the average amplifi-

cation method. On the other hand, the average amplification method is simpler to

implement as it does not require channel estimation at the relaying terminal.

7.3 CDFs of the SNRs of Topology 1 for the Three

Amplification Methods

The mean capacity results presented in Figs. 7.2 and 7.3 are only simulation based

due to the difficulty in obtaining capacity results for the two instantaneous meth-

ods. To gain some understanding and analytical verification of these results, in this

section we look at the end-to-end SNRs of topology 1 for the three different am-
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Figure 7.8: Percentage difference of the instantaneous channel amplification method
compared to the average amplification in mean capacity for the system parameters:
(2, 2, 2), α2 = β2 = τ 2 + 8dB = 10dB and γ2 = δ2.

plification methods. This is still a complex task for the general case. Hence, some

major simplifications are made to make the analysis tractable. With these approx-

imations, the CDFs of the SNRs of topology 1 for the three amplification methods

are derived. The SNR for system topology 1 with (ns, 1, 1) is ρA1A
†
1(B1B

†
1)
−1. For

the three amplification methods, the SNRs of the system can be written as

SNRavg =
ρα2γ2H12H11H

†
11H

†
12

σ2(ργ2ns + σ2 + α2‖H12‖2)
, (7.21)

SNRinsCh =
ρα2γ2H12H11H

†
11H

†
12

σ2(ργ2 tr{H†
11H11}+ σ2 + α2‖H12‖2)

, (7.22)

and

SNRinsPo =
ρα2γ2H12H11H

†
11H

†
12

σ2(‖γH11x + n1‖2 + α2‖H12‖2)
. (7.23)

For the system with (ns, 1, 1), H12 and n1 are complex scalar quantities. Then,

to make the analysis possible, ‖H12‖2 is fixed at its mean value, E[‖H12‖2] = 1,
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Figure 7.9: Percentage difference of the instantaneous channel amplification method
compared to the average amplification in mean capacity for the system parameters:
(2, 2, 2), α2 = β2 = γ2 = δ2 = τ 2 + 10dB.

and BPSK modulation is assumed. Making the relay-destination link a constant

simplifies the analysis while preserving the effect of the relay amplification on the

random source-relay link. The aim is to capture the fundamental behavior of the

relay without any unnecessary complexity. Let the entries of the matrix H11 be

H11 = [h1, . . . , hns ]. As defined before, the entries are ZMCSCG random variables

of unit variance. Then, the derivation of the CDFs of the SNRs of the amplification

methods are as follows.
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7.3.1 CDF of the SNR of the Average Amplification Method

The SNR in (7.21) can now be written as

SNRavg =
ρα2 γ2H12H11H

†
11H

†
12

σ2(ρ γ2 ns + σ2 + α2‖H12‖2)

=
ρα2 γ2(|h1|2 + . . . + |hns|2)

σ2(ρ γ2 ns + σ2 + α2)

, ρα2γ2Q

σ2(ρ γ2 ns + σ2 + α2)
, (7.24)

where Q = |h1|2 + . . . + |hns|2. The random variable, Q, has a complex Chi-squared

distribution with ns degrees of freedom, i.e. Q ∼ χ2
ns

. Then, the CDF of the SNR

of the average amplification can be calculated as

FSNRavg(x) = Pr [SNRavg < x]

= Pr

[
ρα2 γ2Q

σ2(ρ γ2 ns + σ2 + α2)
< x

]

= Pr

[
Q <

x[σ2(ρ γ2 ns + σ2 + α2)]

ρα2 γ2

]
. (7.25)

Now, the CDF can be given using a Chi-square (χ2) distribution [74, 75] as:

FSNRavg(x) =
1

Γ(ns)
γ

(
x[σ2(ργ2ns + σ2 + α2)]

ρα2γ2
, ns

)
, (7.26)

where γ (x,m) =
∫ x

0
e−ttm−1dt is the incomplete gamma function and Γ(m) = (m−

1)!.

7.3.2 CDF of the SNR of the Instantaneous Channel Am-

plification Method

The SNR in (7.22) can be rewritten as

SNRinsCh =
ρα2 γ2H12H11H

†
11H

†
12

σ2(ρ γ2 tr{H†
11H11}+ σ2 + α2‖H12‖2)

=
ρα2 γ2(|h1|2 + . . . + |hns|2)

σ2(ρ γ2(|h1|2 + . . . + |hns|2) + σ2 + α2)

=
ρα2 γ2 Q

σ2(ρ γ2 Q + σ2 + α2)
. (7.27)
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As before, Q ∼ χ2
ns

. Then, the CDF of the SNR of the instantaneous channel

amplification method can be calculated as

FSNRinsCh
(x) = Pr [SNRinsCh < x]

= Pr

[
ρα2 γ2 Q

σ2(ρ γ2 Q + σ2 + α2)
< x

]

= Pr
[
ρα2 γ2 Q < xσ2(ρ γ2Q + σ2 + α2)

]

= Pr
[
ρα2 γ2 Q < xσ2(ρ γ2 Q + σ2 + α2)

]

= Pr

[
Q <

x(σ2(σ2 + α2))

ρα2 γ2 − x ρ σ2 γ2

]
. (7.28)

Then, the CDF can be given using results on the Chi-square (χ2) distribution as:

FSNRinsCh
(x) =

1

Γ(ns)
γ

(
x(σ2(σ2 + α2))

ρα2 γ2 − x ρ σ2 γ2
, ns

)
. (7.29)

7.3.3 CDF of the SNR of the Instantaneous Power Ampli-

fication Method

Let the entries of the symbol vector x be x = [x1, . . . , xns ]
T . Then, the SNR in

(7.23) can be rewritten as

SNRinsPo =
ρα2 γ2H12H11H

†
11H

†
12

σ2(‖γ H11x + n1‖2 + α2‖H12‖2)

=
ρα2 γ2(|h1|2 + . . . + |hns|2)

σ2(‖γ(h1x1 + . . . + hnsxns) + n1‖2 + α2)

=
ρα2 γ2(|h1|2 + . . . + |hns|2)

σ2(‖γ(h1x1 + . . . + hnsxns) + n1‖2 + α2)
, (7.30)

where n1 is a scalar random variable and is written as n1. Then, the CDF of the

SNR of the instantaneous power amplification can be calculated as

FSNRinsPo
(x) = Pr [SNRinsPo < x]

= Pr

[
ρα2 γ2(|h1|2 + . . . + |hns|2)

σ2(‖γ(h1x1 + . . . + hnsxns) + n1‖2 + α2)
< x

]
. (7.31)

Note that each xi ∈ ±√ρ, and hence hixi is ZMCSCG random variable with a

variance of ρ. Then, defining s = (s1, . . . , sns) , (h1x1/
√

ρ, . . . , hnsxns/
√

ρ) and
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letting σ2 = 1 as in the simulations, (7.31) can be calculated as

FSNRinsPo
(x) = Pr

[
ρα2 γ2(|s1|2 + . . . + |sns|2)

(‖γ√ρ(s1 + . . . + sns) + n1‖2 + α2)
< x

]

= Pr




∑ns

i=1 ρα2 γ2|si|2
∑ns

i=1 γ2 ρ |si|2 +
∑ns

i=1

∑ns

j=1,j 6=i γ
2 ρsis

∗
j

+
∑ns

i=1 γ
√

ρ sin
∗
1 +

∑ns

i=1 γ
√

ρs∗i n1 + |n1|2 + α2

< x




= Pr




∑ns

i=1 γ2 ρ|si|2

−∑ns

i=1
γ2 ρ
α2 |si|2x−

∑ns

i=1

∑ns

j=1,j 6=i
γ2 ρ
α2 sis

∗
jx

−∑ns

i=1
γ
√

ρ

α2 sin
∗
1x−

∑ns

i=1
γ
√

ρ

α2 s∗i n1x + 1
α2 |n1|2x

< x


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Now, defining q = (s1, . . . , sns , n1)
T , the CDF can be written in a quadratic form

and we obtain

FSNRinsPo
(x) = Pr

[
q†Aq < x

]
. (7.33)

In (7.33), A is an (ns + 1)× (ns + 1) matrix given as

A =
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. (7.34)

It can be shown that the eigenvalues of the matrix A, λ1, λ2, . . . , λns+1, have the

relationship λ1 < λ2 < λ3 = . . . = λns+1 and only λ1 is negative.

The random variable, y = q†Aq is a quadratic form. Using the results in [76, 77],

the PDF of y can be given as

p(y) = − 1

λ1(1− λ3

λ1
)ns−1(1− λ2

λ1
)
e
− y

λ1 (y < 0), (7.35)

and

p(y) =
1

λ2(1− λ3

λ2
)ns−1(1− λ1

λ2
)
e
− y

λ2 +
ns−1∑
j=1

Bns−1−j

λj
3Γ(j)

yj−1e
− y

λ3 (y > 0). (7.36)
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In (7.36), the Bk’s are constants given by

Bk =
k∑

j=0

(−1)k(k − j)!j!λj
2λ

k−j
1

k!λk
3(1− λ2

λ3
)j+1(1− λ1

λ3
)k+1−j

. (7.37)

Now, using (7.35) and (7.36), the CDF, FSNRinsPo
(x), can be calculated as

FSNRinsPo
(x) =

1
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1
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x
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, j
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(7.38)

7.4 Summary

In this chapter we have compared three types of relay amplification methods in terms

of system capacity performance. For the comparison, we used three different types

of AF MIMO two-hop relaying systems. Using Monte Carlo simulations, we showed

that the instantaneous power amplification has a higher mean capacity compared to

the other methods. However, the instantaneous power amplification method has a

higher variance than the other amplification methods when the number of antennas

in the relay and/or the source is greater than one. In addition, the instantaneous

power amplification method requires additional information at the destination and

would create enormous overhead compared to the other methods. Therefore, the

instantaneous power amplification method does not seem to be very attractive and

practical compared to the other two amplification methods.

Using the simulations, we also showed that the instantaneous channel ampli-

fication method has almost no advantage in terms of the mean capacity, but its

capacity is less variable than the average amplification method. On the other hand,

the average amplification method is simpler to implement, as it does not require

channel estimation at the relaying terminal.

Further, we explained the capacity behaviors using the cumulative distribution

functions of the signal-to-noise ratios of the amplification methods. The CDFs

support our observations made using the simulations and show that instantaneous
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power amplification has a higher mean capacity compared to the other methods.

However, the instantaneous power amplification method has a higher capacity vari-

ance compared to the other methods when the number of antennas in the source or

in the relay is more than one.
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Chapter 8

Conclusions and Future Work

In this chapter we summarize the main findings and conclusions that have been

presented in the thesis. The chapter also includes a discussion of some open problems

and possible research directions for the future.

8.1 Conclusions

The thesis considers the design and analysis of cooperative diversity systems and

MIMO amplify-and-forward relaying systems. In particular we investigate coopera-

tive diversity systems using space-time block codes with adaptive equalization in the

time and frequency domains. For MIMO relaying systems, we analyzed the ergodic

capacity of various systems and compared different amplify-and-forward methods in

terms of system capacity performance.

Transmit diversity using STBC has proven to be effective at mitigating multipath

fading and it has been shown that transmit diversity can have similar performance

to receive diversity [10, 25]. However, the optimal maximum likelihood sequence

estimation techniques for transmit diversity systems have exponentially increasing

complexity with the signal constellation size and channel impulse response length.

Also the optimal maximum likelihood sequence estimation techniques require per-

fect CSI to be known at the receiver. In Chapter 3 we have proposed a new block

time-domain adaptive equalization structure for TR-STBC systems, which elimi-
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nates the separate decoder and also the need for explicit CSI estimation at the

receiver. Using simulations, we found that for short delay spread channels a time-

domain block equalizer requires significantly less equalizer taps than the analogous

frequency-domain equalizer for SC FDE-STBC systems. As a result, the TDE RLS

algorithms converge faster and have better SER steady-state performance than the

analogous adaptive FDE algorithms. Furthermore, the equalizer length of the block

TDE we have developed is independent of the block size. Thus, new alternative

frame structures are possible for the block TDE which allow the system to perform

better in fast time-varying channels. Finally, we analyzed the complexity of the

TDE and FDE RLS algorithms. We found that the TDE system has a slightly

higher complexity than the FDE system. Overall the TDE adaptive algorithm has

better system performance but at the cost of increased complexity compared to the

FDE adaptive system. In general, we conclude that a time-domain adaptive block

equalizer is better to use for short delay spread channels due to its fast convergence.

However, for long delay spread channels a time-domain adaptive block equalizer has

much higher complexity, so a frequency-domain adaptive block equalizer should be

used instead.

Cooperative diversity techniques have recently been proposed for the uplink in

cellular systems to exploit the diversity gains afforded by transmitter diversity tech-

niques [21, 1, 22]. Most researchers working on cooperative diversity assume a flat

fading channel or explicit estimation of the CIR to be available at the receiver. In

Chapter 4 we proposed both time- and frequency-domain adaptive block equaliza-

tion schemes for an amplify-and-forward relay network based on Protocols I and

III proposed by Nabar et al. [1]. By using simulations, we found that our adaptive

algorithms work well for both protocols, and, at the cost of increased complexity,

time-domain adaptive algorithms perform better than frequency-domain algorithms.

In both the time and frequency domains the Protocol I receivers outperform the Pro-

tocol III receivers, particularly in the case of a weak source to relay link. We also

found that overall both Protocol I and Protocol III equalizers have better perfor-

mance compared to TS1 equalizers. The main reason is that TS1 equalizers do not
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use the extra information received through relaying terminal. Thus, TS1 equalizers

have lower diversity gain compared to the Protocol I and Protocol III equalizers.

Therefore, we found that the amplifying-and-forward relaying system can be used

to increase the performance by improving diversity of the system. In summary,

again time-domain adaptive algorithms are more suitable for short delay spread

channels compared to frequency-domain adaptive algorithms. In addition, optimal

Protocol I equalizers are best to use if complexity is not an issue but suboptimal

Protocol I equalizers yield reduced complexity without sacrificing too much per-

formance. Note that the adaptive block equalizers we have proposed assume the

channel very slowly, but in practical situations the channels may be varying faster

than the adaptive equalizer can handle. In these situations, a training sequence

needs to be sent more often or the block size needs to be decreased to handle the

fast varying channels.

Combining wireless relaying systems with MIMO techniques, the system can

achieve higher capacity, broader coverage, and better diversity. Many papers have

been written on MIMO system analysis. However, relatively few address the issue of

MIMO relay system analysis. In Chapter 5 and 6 we analyzed the ergodic capacity

of two different MIMO two-hop relaying systems. In Chapter 5 we derived a closed-

form expression for the ergodic capacity of an AF MIMO two-hop system including

the source to destination link. We validated the analysis by using simulations.

We showed that having the direct link improves the capacity due to diversity and

quantified this improvement. Furthermore, we found that when there is a good

S→D link, there is limited advantage in having an amplify-and-forward relay in

terms spectral efficiency. However, when the S→D link is weak the relay is useful

to provide better spectral efficiency.

In Chapter 6 we derived a closed-form expression for the capacity of the AF

MIMO two-hop two relay system. Again, we verified the analysis by using simula-

tions. We also showed that these results can be used to obtain the capacity for a

single relay system by setting appropriate parameters. The results verified the ca-

pacity gain of relaying systems with two relays due to the extra diversity compared
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to a single relaying system. However, the results also showed that when one of the

source-to-relay links has relatively higher SNR compared to the other, a single relay

system has better capacity than a two relay system. The reason is that the relay with

the weak source-to-relay link amplifies the noise and passes it to the destination,

corrupting the signal received through the other relay. As a results, the capacity of

a two relay system becomes less than even a single relay system. Therefore, in more

than two-relay based relaying systems, methods like relay selection should be used

to choose the best relays to prevent signal corruption due to the relays with weak

source-to-relay links.

There seems to be very little work that compares different amplification meth-

ods in AF MIMO systems. In Chapter 7 we compared three types of amplification

methods: a) average amplification, b) instantaneous channel amplification, and c)

instantaneous power amplification. We found that the instantaneous power am-

plification has a higher mean capacity compared to the other methods. However,

the instantaneous power amplification method has a higher variance than the other

amplification methods when the number of antennas in the relay and/or the source

is greater than one. In addition, the instantaneous power amplification method re-

quires additional information at the destination and would create enormous overhead

compared to the other methods. Therefore, the instantaneous power amplification

method does not seem to be very attractive compared to the other two amplification

methods. We also found that the instantaneous channel amplification method has

almost no advantage in terms of the mean capacity, but its capacity is less variable

than the average amplification method. On the other hand, the average amplifica-

tion method is simpler to implement as it does not require channel estimation at

the relaying terminal.

Finally to recap the important points, time-domain block adaptive equalization

has better performance compared to its frequency-domain counterpart for short

delay spread channels due to its faster convergence behavior. Therefore, it is better

to use a time-domain block adaptive equalizer for short delay spread channels. But,

for long delay spread channels, a frequency-domain block adaptive equalizer needs
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to be used to reduce the complexity. In cooperative diversity systems, again a time-

domain block adaptive equalizer is better to use compared to a frequency-domain

block adaptive equalizer for short delay spread channels. In addition, in cooperative

diversity systems, the optimal Protocol I equalizer is better to use if complexity is

not an issue.

In AF MIMO two-hop one-relay systems, it is always better to use the direct

link signal if it is available to increase the capacity of the system. Note that in this

system, the direct link signal and the signal from the relay arrive at the destination at

two different time slots. Thus, the capacity increases due to the extra time diversity.

However, in AF MIMO two-hop two-relay systems the signals from both the relays

arrive at the destination at the same time. Therefore, the relay with the weaker

source-to-relay link may corrupt the received from the other relay, resulting in a

lower capacity than that even for a single relay system. Hence, in designing wireless

networks, attention has to be given when using relays. This is because sometimes,

depending on the signal strength of the channels, an amplify-and-forward relaying

system can decrease the spectral efficiency as well as the error performance of the

system. Therefore, in these situations, relay selection or another alternative method

has to be used to achieve better system performance.

8.2 Suggested Future Work

In this thesis we studied the design of cooperative diversity systems by using space-

time block codes with adaptive equalization in the time and frequency domains.

We also analyzed the ergodic capacity of various AF MIMO systems and compared

different amplify-and-forward methods in terms of system capacity performance.

However, there still remain many open issues that require further exploration. Some

of these open problems are enumerated below.

In this thesis we used STBCs that are only suitable for two transmitting anten-

nas or one-relay based cooperative relaying systems. These systems achieve full rate

and full diversity. It would be interesting in future research to expand this work on
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adaptive equalization for more than one-relay based cooperative relaying systems.

Earlier this was not possible as STBCs were designed primarily for two transmitting

antennas. However, recently, quasi-orthogonal space-time block codes (QO-STBC)

and rotated QO-STBC [78, 79, 80, 81] have been introduced for more than two

transmit antenna based transmissions and also for more than one-relay based relay-

ing systems, still achieving full rate and full diversity. With this advancement in this

area of research, now it is possible to expand our work on equalization techniques

for more than one-relay based cooperative relaying systems.

Very recently, cooperative diversity techniques have been proposed for the uplink

in cellular systems to exploit the diversity gains afforded by transmitter diversity

techniques. Hence, there are still many issues that need to be dealt with before

implementing practical systems. One of the main issues is the timing synchroniza-

tion between source and relaying terminals. In this thesis, specifically in Chapter 4,

we assumed perfect timing synchronization. In practical systems, achieving perfect

timing synchronization is a difficult task. Hence, to get a more realistic perfor-

mance of a cooperative diversity system, it is important to reproduce the results by

relaxing this assumption. In [82, 83] relaying systems have been studied by relax-

ing this assumption. Similar methods can be applied to the work in this thesis to

gauge the performance of the adaptive equalization schemes in the case of imperfect

synchronization.

Recently, superposition modulation [84, 85] has been introduced for cooperative

diversity systems. The results show that the superposition modulation achieves bet-

ter performance compared to “classical” cooperative diversity systems (cooperative

diversity systems given in Chapter 4). Hence, it would be interesting to see the per-

formance of adaptive equalization schemes for superposition modulation scenarios.

Throughout Chapters 5, 6 and 7 we have assumed i.i.d. Rayleigh channels, which

are more suitable for urban or indoor environments. In practice, however, a LOS

path or correlation may be present and in such scenarios a Ricean fading model

and/or a correlated model may be preferable. Additionally, our assumption of the

channels being frequency-flat may not be realistic. Therefore, the results derived
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in these chapters need to be extended to frequency selective channels and also for

other channel types such as Ricean and correlated Rayleigh.

The capacity results given in Chapter 7 are based on simulation results due to

the difficulty in obtaining closed-form analytical expressions for the two instanta-

neous amplification methods. For example, the instantaneous channel amplification

method analysis would require the eigenvalue distribution of matrices of the form

S =
HH†

tr{H†H} , (8.1)

where the entries of matrix H are ZMCSCG random variables with unit variance.

However, these distributions are not available in the literature and their evaluation

appears to be rather difficult. Nevertheless any progress on such a problem would

be very useful.

All the work in this thesis assumes that the relays can not receive and transmit at

the same time. However, with the help of new antenna technology it may be possible

for wireless relays to receive and transmit at the same time (duplex) [86, 87]. This

may improve the spectral efficiency and/or the systems’ error performance. Thus,

the work presented in the thesis could be extended to duplex relay scenarios.

The last and probably the most important issue is how the results in this thesis

can be applied in practical systems. We have provided adaptive equalization tech-

niques for cooperative diversity systems and also a MIMO relay system capacity

analysis for two-hop relaying systems. Development of practical systems using the

adaptive equalization techniques given in this work will still be challenging and a

major research direction in the future. Furthermore, the capacity analysis results

given for AF MIMO relay systems can be used as benchmarks for the throughput

of real systems. However, approaching the optimal capacity with limited cost and

complexity remains the ultimate challenge.
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