445 research outputs found
High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes
Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 µW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning
Keeping Energy-Neutral Devices Operational: a Coherent Massive Beamforming Approach
Keeping the batteries on the shelf: this is the holy grail for low-cost
Internet of Things (IoT) nodes. In this paper we study the potential of radio
frequency (RF)-based wireless power transfer implementing coherent beamforming
with many antennas to realize this ambitious target. We optimize the deployment
of the antennas to charge electronic shelf labels (ESLs), considering actual
regulatory constraints. The results confirm the feasibility to create power
spots that are sufficient to keep the high density of battery-less devices
operational
How to achieve robustness against scaling in a real-time digital watermarking system for broadcast monitoring
In the European Esprit project VIVA (Visual Identity Verification Auditor) a real-time digital watermarking system for broadcast monitoring has been investigated and implemented. On top of the usual requirements for watermarks, the VIVA watermarking system has to satisfy an additional number of constraints. One of the most important constraints in a broadcast environment is the robustness of the watermark against scaling. This paper describes how robustness against scaling is achieved in the VIVA project. Furthermore, a real-time implementation of the algorithms is discussed. Experimental results prove the effectiveness of the algorithms
How to achieve robustness against scaling in a real-time digital watermarking system for broadcast monitoring
In the European Esprit project VIVA (Visual Identity Verification Auditor) a real-time digital watermarking system for broadcast monitoring has been investigated and implemented. On top of the usual requirements for watermarks, the VIVA watermarking system has to satisfy an additional number of constraints. One of the most important constraints in a broadcast environment is the robustness of the watermark against scaling. This paper describes how robustness against scaling is achieved in the VIVA project. Furthermore, a real-time implementation of the algorithms is discussed. Experimental results prove the effectiveness of the algorithms
How to achieve robustness against scaling in a real-time digital watermarking system for broadcast monitoring
In the European Esprit project VIVA (Visual Identity Verification Auditor) a real-time digital watermarking system for broadcast monitoring has been investigated and implemented. On top of the usual requirements for watermarks, the VIVA watermarking system has to satisfy an additional number of constraints. One of the most important constraints in a broadcast environment is the robustness of the watermark against scaling. This paper describes how robustness against scaling is achieved in the VIVA project. Furthermore, a real-time implementation of the algorithms is discussed. Experimental results prove the effectiveness of the algorithms
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}
Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV
collected by the CDF II detector, we present a cross section measurement of
top-quark pair production with an additional radiated photon. The events are
selected by looking for a lepton, a photon, significant transverse momentum
imbalance, large total transverse energy, and three or more jets, with at least
one identified as containing a b quark. The ttbar+photon sample requires the
photon to have 10 GeV or more of transverse energy, and to be in the central
region. Using an event selection optimized for the ttbar+photon candidate
sample we measure the production cross section of, and the ratio of cross
sections of the two samples. Control samples in the dilepton+photon and
lepton+photon+\met, channels are constructed to aid in decay product
identification and background measurements. We observe 30 ttbar+photon
candidate events compared to the standard model expectation of 26.9 +/- 3.4
events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the
ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009.
Assuming no ttbar+photon production, we observe a probability of 0.0015 of the
background events alone producing 30 events or more, corresponding to 3.0
standard deviations.Comment: 9 pages, 3 figure
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
Precision Top-Quark Mass Measurements at CDF
We present a precision measurement of the top-quark mass using the full
sample of Tevatron TeV proton-antiproton collisions collected
by the CDF II detector, corresponding to an integrated luminosity of 8.7
. Using a sample of candidate events decaying into the
lepton+jets channel, we obtain distributions of the top-quark masses and the
invariant mass of two jets from the boson decays from data. We then compare
these distributions to templates derived from signal and background samples to
extract the top-quark mass and the energy scale of the calorimeter jets with
{\it in situ} calibration. The likelihood fit of the templates from signal and
background events to the data yields the single most-precise measurement of the
top-quark mass, \mtop = 172.85 \pm\pmComment: submitted to Phys. Rev. Let
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
- …