322 research outputs found

    Exploring the Whole Life Carbon Benefits of Insulation Materials in Housing Refurbishment

    Get PDF
    Embodied carbon can be an important part of a building's whole life carbon cost and as such offers potential possibilities to reduce carbon emissions. To date the majority of research in this area has focused on new buildings and overlooked the existing housing stock much of which is in urgent need of upgrading if emissions reduction targets set out by the Government are to be achieved. This paper briefly explores the whole life benefits of including embodied carbon in the specification of insulation materials in UK retrofits. Insulation has the potential to both reduce in-use CO2 emissions of a building as well as lead to further emissions during its manufacture and transport, and in the case of bio-insulations to even sequester CO2. Dynamic thermal simulation was used to predict CO2 savings over 25 to 50 year periods resulting from heating reductions of retrofitting, and the embodied carbon values of the materials used was calculated using two freely available databases. Three insulation materials were used for comparison; Polyurethane foam, Mineral wool and Wood fibre. The results suggest that the reduction of embodied carbon in retrofitting has the potential to reduce a buildings whole life carbon, with the extent of this reduction dependent on whether sequestered carbon is included in the figures for bio based insulation. Although the accepted orthodoxy recommends the use of the most efficient insulation available, this study shows that the inclusion of embodied carbon values into the equation brings this approach into question

    Caregivers' experiences with the new family‐centred paediatric physiotherapy programme COPCA : a qualitative study

    Get PDF
    Caregivers' experiences during early intervention of their infant with special needs have consequences for their participation in the intervention. Hence, it is vital to understand caregivers' view. This study explored caregivers' experiences with the family-centred early intervention programme "COPing with and CAring for infants with special needs" (COPCA)

    Consequences of Discrimination at the Workplace

    Get PDF
    Nowadays, although work relationships should be based on the principle of equal treatment of employees, diversity at the workplace has led to an increase in employee inequality in treatment. Despite policies to regulate work-related inequalities, it still exists and develops on the basis of personal characteristics such as gender, age, geographical area, religion, sexual orientation or some chronic disease. Workplace inequality can be defined as that distinction in favor of or against a person or thing on grounds that relate to the group, class or category of which the person or work belongs and which is reflected in wage differences between men and womenunfair practices and opportunities for injustice, especially in regard to employment of people of different ethnic origins

    Relationship between casting modulus and grain size in cast A356 aluminium alloys

    Get PDF
    Microstructure of Al-Si alloy castings depends most generally on melt preparation and on the cooling rate imposed by the thermal modulus of the component. In the case of Al-Si alloys, emphasis is put during melt preparation on refinement of pro-eutectic (Al) grains and on modification of the Al-Si eutectic. Thermal analysis has been used since long to check melt preparation before casting, i.e. by analysis of the cooling curve during solidification of a sample cast in an instrumented cup. The conclusions drawn from such analysis are however valid for the particular cooling conditions of the cups. It thus appeared of interest to investigate how these conclusions could extrapolate to predict microstructure in complicated cast parts showing local changes in the solidification conditions. For that purpose, thermal analysis cups and instrumented sand and die castings with different thermal moduli and thus cooling rates have been made, and the whole set of cooling curves thus recorded has been analysed. A statistical analysis of the characteristic features of the cooling curves related to grain refinement in sand and die castings allowed determining the most significant parameters and expressing the cube of grain size as a polynomial of these parameters. After introduction of a further parameter quantifying melt refining an excellent correlation, with a R2 factor of 0.99 was obtained

    Effects of Preterm Birth on Cortical Thickness Measured in Adolescence

    Get PDF
    Despite the extensive research into brain development after preterm birth, few studies have investigated its long-term effects on cortical thickness. The Stockholm Neonatal Project included infants between 1988 and 1993 with birth weight (BW) ≤1500 g. Using a previously published method, cortical thickness was estimated on T1-weighted 3D anatomical images acquired from 74 ex-preterm and 69 term-born adolescents (mean age 14.92 years). The cortex was significantly thinner in ex-preterm individuals in focal regions of the temporal and parietal cortices as indicated by voxel-wise t-tests. In addition, large regions around the central sulcus and temporal lobe as well as parts of the frontal and occipital lobes tended also to be thinner in the ex-preterm group. Although these results were not significant on voxel-wise tests, the spatially coherent arrangement of the thinning in ex-preterm individuals made it notable. When the group of ex-preterm individuals was divided by gestational age or BW, the thinning tended to be more pronounced in the anterior and posterior poles in those born nearer term or with a BW closer to 1500 g. These results support the notion that preterm birth is a risk factor for long-term development of cortical thickness

    Cerebral Palsy:Early Markers of Clinical Phenotype and Functional Outcome

    Get PDF
    The Prechtl General Movement Assessment (GMA) has become a cornerstone assessment in early identification of cerebral palsy (CP), particularly during the fidgety movement period at 3-5 months of age. Additionally, assessment of motor repertoire, such as antigravity movements and postural patterns, which form the Motor Optimality Score (MOS), may provide insight into an infant's later motor function. This study aimed to identify early specific markers for ambulation, gross motor function (using the Gross Motor Function Classification System, GMFCS), topography (unilateral, bilateral), and type (spastic, dyskinetic, ataxic, and hypotonic) of CP in a large worldwide cohort of 468 infants. We found that 95% of children with CP did not have fidgety movements, with 100% having non-optimal MOS. GMFCS level was strongly correlated to MOS. An MOS > 14 was most likely associated with GMFCS outcomes I or II, whereas GMFCS outcomes IV or V were hardly ever associated with an MOS > 8. A number of different movement patterns were associated with more severe functional impairment (GMFCS III-V), including atypical arching and persistent cramped-synchronized movements. Asymmetrical segmental movements were strongly associated with unilateral CP. Circular arm movements were associated with dyskinetic CP. This study demonstrated that use of the MOS contributes to understanding later CP prognosis, including early markers for type and severity

    Brain Research to Ameliorate Impaired Neurodevelopment - Home-based Intervention Trial (BRAIN-HIT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This randomized controlled trial aims to evaluate the effects of an early developmental intervention program on the development of young children in low- and low-middle-income countries who are at risk for neurodevelopmental disability because of birth asphyxia. A group of children without perinatal complications are evaluated in the same protocol to compare the effects of early developmental intervention in healthy infants in the same communities. Birth asphyxia is the leading specific cause of neonatal mortality in low- and low-middle-income countries and is also the main cause of neonatal and long-term morbidity including mental retardation, cerebral palsy, and other neurodevelopmental disorders. Mortality and morbidity from birth asphyxia disproportionately affect more infants in low- and low-middle-income countries, particularly those from the lowest socioeconomic groups. There is evidence that relatively inexpensive programs of early developmental intervention, delivered during home visit by parent trainers, are capable of improving neurodevelopment in infants following brain insult due to birth asphyxia.</p> <p>Methods/Design</p> <p>This trial is a block-randomized controlled trial that has enrolled 174 children with birth asphyxia and 257 without perinatal complications, comparing early developmental intervention plus health and safety counseling to the control intervention receiving health and safety counseling only, in sites in India, Pakistan, and Zambia. The interventions are delivered in home visits every two weeks by parent trainers from 2 weeks after birth until age 36 months. The primary outcome of the trial is cognitive development, and secondary outcomes include social-emotional and motor development. Child, parent, and family characteristics and number of home visits completed are evaluated as moderating factors.</p> <p>Discussion</p> <p>The trial is supervised by a trial steering committee, and an independent data monitoring committee monitors the trial. Findings from this trial have the potential to inform about strategies for reducing neurodevelopmental disabilities in at-risk young children in low and middle income countries.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00639184</p

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment
    corecore