199 research outputs found
Improving phylogeny reconstruction at the strain level using peptidome datasets
Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.This research was funded by Grant AGL2013-44039-R from the Spanish “Plan Estatal de I+D+I”, and by Grant EM2014/046 from the “Plan Galego de investigación, innovación e crecemento 2011-2015”. BS was recipient of a Ramón y Cajal postdoctoral contractfrom the Spanish Ministry of Economyand Competitiveness. This work was also partially funded by the [14VI05] Contract-Programme from the University of Vigo and the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273).The research leading to these results has also received funding from the European Union’s Seventh Framework Programme FP7/REGPOT-2012-2013.1 under grant agreement n˚ 316265, BIOCAPS. This document reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained herein. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations.
Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Long-term hemodynamic responses and reverse remodeling after pharmacotherapy in HFpEF versus HFrEF: a systematic review and meta-analysis
The acute response to therapeutic afterload reduction differs between heart failure with preserved (HFpEF) versus reduced ejection fraction (HFrEF), with larger left ventricular (LV) stroke work augmentation in HFrEF compared with HFpEF. This may (partially) explain the neutral effect of HFrEF-medication in HFpEF. It is unclear whether such differences in hemodynamic response persist and/or differentially trigger reverse remodeling in the case of long-term afterload reduction. A systematic search was performed, identifying 21 clinical trials investigating renin-angiotensin-aldosterone system (RAAS) inhibitors, b-blockers, and sodium-glucose cotransport 2 inhibitors that report data on afterload reduction, stroke volume, and reverse remodeling in HFpEF and/or HFrEF. In both HFpEF and HFrEF, meta-analyses revealed limited long-term change in systolic/diastolic blood pressure (-5.6/-3.2 and -4.6/-1.4 mmHg, respectively) and LV afterload reduction (arterial elastance: -0.039 and -0.055 mmHg/mL, respectively). Long-term treatment did not result in an increase in stroke volume, with the exception of b-blockers in HFrEF. Indexed LV mass decreased slightly in both HFpEF and HFrEF (-2.8 and -2.3 g/m2, respectively). In HFrEF, treatment reduced LV end-diastolic and end-systolic volume (-8 and -6 mL, respectively), whereas in HFpEF there was no relevant change. Contrary to acute heart failure studies, long-term afterload reduction had little effect on blood pressure and stroke volume augmentation in both HFpEF and HFrEF. However, reverse remodeling was clearly present in HFrEF but was essentially absent in HFpEF
Giant primary adrenal hydatid cyst presenting with arterial hypertension: a case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>A primary hydatid cyst of the adrenal gland is still an exceptional localization. The adrenal gland is an uncommon site even in Morocco, where echinococcal disease is endemic.</p> <p>Case presentation</p> <p>We report the case of a 64-year-old Moroccan man who presented with the unusual symptom of arterial hypertension associated with left flank pain. Computed tomography showed a cystic mass of his left adrenal gland with daughter cysts filing the lesion (Type III). Despite his negative serology tests, the diagnosis of a hydatid cyst was confirmed on surgical examination. Our patient underwent surgical excision of his left adrenal gland with normalization of blood pressure. No recurrence has occurred after 36 months of follow-up.</p> <p>Conclusion</p> <p>There are two remarkable characteristics of this case report; the first is the unusual location of the cyst, the second is the association of an adrenal hydatid cyst with arterial hypertension, which has rarely been reported in the literature.</p
Prevalence of SARS-CoV-2 and co-occurrence/co-infection with malaria during the first wave of the pandemic (the Burkina Faso case)
Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-COV-2 and for whole viral genome sequencing. Our results show a 3.2% and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 2 cases of confirmed co-infection and 8 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages: A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Sub-Saharan African country. Besides, it highlights the low frequency of co-infection with malaria in African communities.This research work received funding from by the European Commission NextGenerationEU (Regulation EU 2020/2094) and grant 202020E159 through CSIC Global Health Platform (PTI Salud Global).N
Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group
<p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p
Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000–18: a geospatial modelling study
Background: More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods: We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km × 5 km resolution in 98 LMICs based on 2·1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings: Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205 000 (95% uncertainty interval 147 000–257 000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation: Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Funding: Bill & Melinda Gates Foundation
Global injury morbidity and mortality from 1990 to 2017: Results from the global burden of disease study 2017
Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care
Burden of injury along the development spectrum: associations between the Socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017
Background The epidemiological transition of non-communicable diseases replacing infectious diseases as the main contributors to disease burden has been well documented in global health literature. Less focus, however, has been given to the relationship between sociodemographic changes and injury. The aim of this study was to examine the association between disability-adjusted life years (DALYs) from injury for 195 countries and territories at different levels along the development spectrum between 1990 and 2017 based on the Global Burden of Disease (GBD) 2017 estimates. Methods Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate. results For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced. Conclusions The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum
Estimating global injuries morbidity and mortality : methods and data used in the Global Burden of Disease 2017 study
Background: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. Methods: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. Results: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. Conclusions: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future
- …
