97 research outputs found

    Factors affecting post-fire crown regeneration in cork oak (Quercus suber L.) trees

    Get PDF
    Cork oak (Quercus suber) forests are acknowledged for their biodiversity and economic (mainly cork production) values. WildWres are one of the main threats contributing to cork oak decline in the Mediterranean Basin, and one major question that managers face after Wre in cork oak stands is whether the burned trees should be coppiced or not. This decision can be based on the degree of expected crown regeneration assessed immediately after Wre. In this study we carried out a post-Wre assessment of the degree of crown recovery in 858 trees being exploited for cork production in southern Portugal, 1.5 years after a wildWre. Using logistic regression, we modelled good or poor crown recovery probability as a function of tree and stand variables. The main variables inXuencing the likelihood of good or poor crown regeneration were bark thickness, charring height, aspect and tree diameter. We also developed management models, including simpler but easier to measure variables, which had a lower predictive power but can be used to help managers to identify, immediately after Wre, trees that will likely show good crown regeneration, and trees that will likely die or show poor regeneration (and thus, potential candidates for trunk coppicin

    Biological and geophysical feedbacks with fire in the Earth system

    Get PDF
    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences

    Super-Genotype: Global Monoclonality Defies the Odds of Nature

    Get PDF
    The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae) with differing global (North American and African) patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality within and among all of these areas (FST = 0.0) and is supported by extreme low quantitative trait variance (QST = 0.00065–0.00952). The results support the general-purpose-genotype hypothesis that can tolerate all environmental variation. However, a single global genotype and widespread invasiveness under numerous environmental conditions suggests a super-genotype. The super-genotype described here likely evolved high levels of plasticity in response to fluctuating environmental conditions during the Early to Mid Holocene. During the Late Holocene, when environmental conditions were predominantly constant but extremely inclement, strong selection resulted in only a few surviving genotypes

    Assessing Natural Resource Use by Forest-Reliant Communities in Madagascar Using Functional Diversity and Functional Redundancy Metrics

    Get PDF
    Biodiversity plays an integral role in the livelihoods of subsistence-based forest-dwelling communities and as a consequence it is increasingly important to develop quantitative approaches that capture not only changes in taxonomic diversity, but also variation in natural resources and provisioning services. We apply a functional diversity metric originally developed for addressing questions in community ecology to assess utilitarian diversity of 56 forest plots in Madagascar. The use categories for utilitarian plants were determined using expert knowledge and household questionnaires. We used a null model approach to examine the utilitarian (functional) diversity and utilitarian redundancy present within ecological communities. Additionally, variables that might influence fluctuations in utilitarian diversity and redundancy—specifically number of felled trees, number of trails, basal area, canopy height, elevation, distance from village—were analyzed using Generalized Linear Models (GLMs). Eighteen of the 56 plots showed utilitarian diversity values significantly higher than expected. This result indicates that these habitats exhibited a low degree of utilitarian redundancy and were therefore comprised of plants with relatively distinct utilitarian properties. One implication of this finding is that minor losses in species richness may result in reductions in utilitarian diversity and redundancy, which may limit local residents' ability to switch between alternative choices. The GLM analysis showed that the most predictive model included basal area, canopy height and distance from village, which suggests that variation in utilitarian redundancy may be a result of local residents harvesting resources from the protected area. Our approach permits an assessment of the diversity of provisioning services available to local communities, offering unique insights that would not be possible using traditional taxonomic diversity measures. These analyses introduce another tool available to conservation biologists for assessing how future losses in biodiversity will lead to a reduction in natural resources and provisioning services from forests

    Composition of woody species in a dynamic forest-woodland-savannah mosaic in Uganda: implications for conservation and management

    Get PDF
    Forest¿woodland¿savannah mosaics are a common feature in the East African landscape. For the conservation of the woody species that occur in such landscapes, the species patterns and the factors that maintain it need to be understood. We studied the woody species distribution in a forest¿woodland¿savannah mosaic in Budongo Forest Reserve, Uganda. The existing vegetation gradients were analyzed using data from a total of 591 plots of 400 or 500 m2 each. Remotely sensed data was used to explore current vegetation cover and the gradients there in for the whole area. A clear species gradient exists in the study area ranging from forest, where there is least disturbance, to wooded grassland, where frequent fire disturbance occurs. Most species are not limited to a specific part of the gradient although many show a maximum abundance at some point along the gradient. Fire and accessibility to the protected area were closely related to variation in species composition along the ordination axis with species like Cynometra alexandri and Uvariopsis congensis occurring at one end of the gradient and Combretum guenzi and Lonchocarpus laxiflorus at the other. The vegetation cover classes identified in the area differed in diversity, density and, especially, basal area. All vegetation cover classes, except open woodland, had indicator species. Diospyros abyssinica, Uvariopsis congensis, Holoptelea grandis and all Celtis species were the indicator species for the forest class, Terminalia velutina and Albizia grandbracteata for closed woodland, Grewia mollis and Combretum mole for very open woodland and Lonchocarpus laxiflorus, Grewia bicolor and Combretum guenzi for the wooded grassland class. Eleven of the species occurred in all cover classes and most of the species that occurred in more than one vegetation cover class showed peak abundance in a specific cover class. Species composition in the study area changes gradually from forest to savannah. Along the gradient, the cover classes are distinguishable in terms of species composition and vegetation structure. These classes are, however, interrelated in species composition. For conservation of the full range of the species within this East African landscape, the mosaic has to be managed as an integrated whole. Burning should be varied over the area with the forest not being burnt at all and the wooded grassland burnt regularly. The different vegetation types that occur between these two extremes should be maintained using a varied fire regim
    • …
    corecore