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Abstract. The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated
ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a
replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and

mechanical þ fire treatments. Variables within the vegetation, fuelbed, forest floor and soil, bark beetles, tree diseases
and wildlife were measured in 10-ha stands, and ecological response was compared among treatments at the site level, and
across sites, to better understand the influence of differential site conditions. For most sites, treated stands were predicted

to be more resilient to wildfire if it occurred shortly after treatment, but for most ecological variables, short-term response
to treatments was subtle and transient. Strong site-specificity was observed in the response of most ecosystem variables,
suggesting that practitioners employ adaptive management at the local scale. Because ecosystem components were tightly

linked, adaptive management would need to include monitoring of a carefully chosen set of key variables. Mechanical
treatments did not serve as surrogates for fire for most variables, suggesting that fire be maintained whenever possible.
Restoration to pre-settlement conditions will require repeated treatments over time, with eastern forests requiring more
frequent applications.

Additional keywords: dry forest management, forest thinning, frequent fire regimes, mechanical treatment, oak, pine,
prescribed fire, seasonally dry forests.
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Introduction

Prescribed fire and mechanical treatments have been the most
common fuel-reduction practices used in seasonally dry forests of
the US since the 1970s (Agee and Skinner 2005). These practices

are popular because forest managers realise that frequent distur-
bance is necessary to maintain stand structure in oak (Quercus
spp.)- and pine (Pinus spp.)-dominated forests of eastern and

western North America (Weaver 1943; Van Lear and Waldrop
1989; Hutchinson et al. 2008*A). Prior to settlement by Euro–
Americans, low to moderate intensity surface fires burned fre-

quently in these forests, and tended to reduce the quantity of fuels,
break up their continuity and discourage the establishment of
shrubs and fire-intolerant tree species, leading eventually to
stands dominated by larger diameter fire-tolerant tree species

(Youngblood et al. 2004; North et al. 2007; Hutchinson et al.

2008*; Collins et al. 2011). Yet fire suppression, preferential
harvest of large diameter trees and livestock grazing over the past

100–150 years have converted stands to fire-intolerant species
and shifted fuelbed conditions over millions of hectares in the
East and in the Interior West (Parsons and DeBenedetti 1979;

Stephens and Ruth 2005). As a result, recent wildfires in sea-
sonally dry forests have tended to be larger andmore severe, even
in areas that might rarely have experienced stand-replacement
fires (Parsons and DeBenedetti 1979; Hessburg and Agee 2003;

Knapp et al. 2005*). This scenario explains why prescribed fire
and mechanical treatments are commonly used by managers in
oak- and pine-dominated forests that once burned frequently, in

an effort to change the only factor in the fire formula they can: the
quantity and continuity of fuel (Agee and Skinner 2005).

Prescribed fire has been the most attractive fuel-reduction

practice for forest managers, for the obvious reason that it is
most likely to emulate the natural process that it is designed to
replace (McRae et al. 2001). Unfortunately, when forest man-

agers attempt to apply prescribed fire, they are often constrained
by social, economic and administrative issues, such that the
window of opportunity for its application is often narrowed or

eliminated (Winter et al. 2002; Brunson and Shindler 2004). In

addition, prescribed fire after long periods of fire suppression
differs from fire at historically frequent intervals andmay lead to
undesirable ecological effects. As a result, fuel-reduction surro-

gates such as forest thinning or mastication have become more
attractive (Crow and Perera 2004). The assumption is that if
managers can use mechanical treatments to reduce fuels, and

accomplish the same stand-structure goals as those obtained by
prescribed fire, the constraints and risks posed by the application
of fire can be avoided. The only problemwith this idea is that we

know little about how mechanical treatments compare with
prescribed fire, particularly in terms of ecological effects and
their interactions (McIver et al. 2001*). Furthermore, because
few multi-site studies have been conducted, we have little

confidence in how the comparison between alternative fuel-
reduction methods might play out when repeated in different
forests having different conditions (Waldrop and McIver

2006*). These considerations provided the incentive behind
the genesis and development of the National Fire and Fire
Surrogate study (FFS) (McIver and Weatherspoon 2010*).

The FFS was designed to evaluate how alternative fuel-
reduction treatments influence a multitude of ecological
variables at 12 seasonally dry sites nationwide (forests that
experience at least one dry season per year) (Fig. 1; McIver and

Weatherspoon 2010*). Short-term results of this study have
been disseminated in a variety of media over the years
(Youngblood et al. 2007*), and have been published in more

than 170 technical papers (http://frames.nbii.gov, accessed 22
September 2012), including collections in four journals (Forest
Ecology and Management, McIver et al. 2008*; Ecological

Applications, McIver et al. 2009*; Forest Science, McIver and
Fettig 2010*; Open Environmental Sciences, Robinson 2010*).
Detailed findings for each publication can be found on the

website of the Joint Fire Science Program (http://www.frames.
gov/FFS, accessed 21 September 2012), and have been recently
published as a US Forest Service General Technical Report

ACitations marked with asterisk refer to papers published as part of the National Fire and Fire Surrogate Study.

64 Int. J. Wildland Fire J. D. McIver et al.

http://frames.nbii.gov
http://www.frames.gov/FFS
http://www.frames.gov/FFS


(McIver et al. 2012*). In the current paper, we summarise the
published findings of the FFS study, and interpret them in the

context of key literature. We first describe the experiment and
report on the effectiveness of the implemented treatments. A
summary of experimental results is then presented and inter-

preted from the perspective of key management ‘themes’ the
study was designed to address, including the magnitude and
duration of effects, the issue of fuel-reduction surrogates, key

management tradeoffs, habitat effects on flora and fauna and
restoration of seasonally dry forest ecosystems.

FFS study design

The FFS study was conducted in seasonally dry forests admin-
istered by the US Forest Service, National Park Service, state

parks, universities and private industry at 12 sites across the
United States: five in the East and seven in the Interior West
(Fig. 1). Fuel-reduction treatments were applied between 1998

and 2006 at all 12 sites (Table 1). Eleven sites received four

treatments: un-manipulated control, prescribed fire only,
mechanical treatment only and mechanicalþ fire. At the

Southern Sierra Nevada site (NPS land, prescribed fire the pri-
mary treatment option) the two active treatments were early and
late season burns. Each treatment was replicated at all 12 sites

three or four times at the stand level, and most analyses were
conducted at this scale. Each standwas at least 10 ha in size, with
the perimeter surrounded by a buffer at least 50m wide that

received the same treatment. All pre- and post-treatment mea-
surements were taken within a set of plots established on a
40–60-m grid in the interior of each stand.

Detailed prescriptions for prescribed fire and mechanical
treatment were unique to each site (Table 1), but the common
objective for all treatments was to achieve stand and fuel
conditions such that, if subjected to a head fire under the 80th

percentile weather conditions, at least 80% of the basal area of
the dominant and co-dominant trees would survive (80/80 rule).
Clearly, because the alternative fuel-reduction treatments would

be expected to influence stands and fuelbeds in fundamentally
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Fig. 1. Name and location of the 12 National Fire and Fire Surrogate (FFS) sites, showing relevant national forests (black-shaded areas), forest type, fire

return interval (FRI) and elevation range (m). Lighter shading indicates ‘representative land base’, or the area to which FFS results can bemost directly applied

for each site. Representative land bases are derived fromEPAType III Ecoregions: www.epa.gov/wed/pages/ecoregions/level_iii.htm, accessed 21 September

2012. Scientific names for tree species in Fig. 1, but not mentioned in text: Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), white fir (Abies

concolor) and red fir (Abies magnifica).
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different ways, we did not expect post-treatment stands to look
the same for all treatments and for all sites. Rather, the 80/80 rule

served to guide fire-management officers and silviculturists so
that they could better envision the kinds of treatmentswewanted
(Stephens et al. 2009*). For mechanical treatments, managers at

each site used a biomass or sawlog removal system that was
locally applicable to that site, but always with the 80/80 rule in

mind. Burning was conducted following common local prac-
tices: in the late spring or early autumn at all western sites, in

spring at the Central Appalachian Plateau and bothCoastal Plain
sites, and in the winter at the South-eastern Piedmont and
Southern Appalachian Mountain sites. The mechanical þ fire

treatment typically required that wewait at least a full season for
mechanically treated fuels to cure before burning at each site.

Table 1. Past management history and treatment information for the 12 Fire and Fire Surrogate sites

Citations marked with asterisk refer to papers published as part of the National Fire and Fire Surrogate Study

Site name and location Past management history Treatment: type and year

North-eastern Cascades, Okanogan–

Wenatchee National Forest, central WA

(Dodson et al. 2008*; Agee and

Lehmkuhl 2009*)

Logging in the 1930s and pre-commercial thin in

1970s; fire exclusion since early 1900s; heavy

grazing in early 20th century.

Mechanical (2001): fell, limb and buck with chainsaws; yard

with helicopter; residue left on site.

Burn (2004): spring underburn using combination of backing

and strip head fires

Blue Mountains, Wallowa–Whitman

National Forest, north-eastern OR

(Youngblood et al. 2006*)

Harvesting in early 20th century and as recently

as 1986; fire exclusion since early 1900s;

grazing; most trees 60–90 years old

Mechanical (1998): fell, limb and buck with tracked single-

grip harvesters; yard with forwarders; residue left on site

Burn (2000): autumn underburn, strip head fire

Northern RockyMountains, University of

Montana, Lubrecht Experimental

Forest, western MT (Metlen and Fiedler

2006*)

Logging in early 20th century and fire suppres-

sion resulting in 80–90 year old stand; Grazing

over last 100 years

Mechanical (2002): fell, limb and buck with tracked single-

grip harvesters; yard with forwarders; residue left on site

Burn (2002): spring underburn, strip head fire

Southern Cascades, Klamath National

Forest, north-eastern CA (Ritchie 2005)

Railroad logging in 1920s – various sanitation

and salvage since.

Mechanical (2001): fell with feller-buncher; yardwhole trees

with rubber-tired or tracked skidders

Burn (2001): autumn underburn, strip head fire

Central Sierra Nevada, University of

California, Blodgett Forest Experimen-

tal Station, central CA (Stephens and

Moghaddas 2005a*, 2005b*)

Railroad logging in early 20th century; sanitation

salvage mid 1970s; commercial harvest using

various methods to present

Mechanical (2002): fell, limb and buck trees .25-cm

diameter at breast height (DBH) with chainsaws; lop and

scatter tops and limbs; yard with skidders; post-harvest

masticate 70% of trees ,25-cm DBH

Burn (2002): autumn underburn using a combination of

backing and strip head fires

Southern Sierra Nevada, Sequoia

National Park, south-central CA (Knapp

et al. 2005*)

Fire suppression since early 20th century Mechanical: none

Burn (2002, 2003): autumn and spring underburn, using strip

head fires

South-western Plateau, Kaibab and

Coconino National Forests, northern AZ

(Converse et al. 2006b*)

Past harvesting; grazing; limited low thinning in

early 1990s

Mechanical (2003): fell, limb, and buck trees.13-cm DBH

with chainsaws; fell and lop trees ,13 cm to waste with

chainsaws

Burn (2003): autumn underburns conducted as both backing

and strip head fires

Central Appalachian Plateau, Mead

Corporation, Ohio State Lands, southern

OH (Waldrop et al. 2008*)

Forests largely cut over during 1800s; human

ignited fires common before early 1880s; fire

suppression since early 1900s

Mechanical (2001): fell, limb, buck trees.15-cm DBHwith

chainsaws; leave 18-m2 ha�1 basal area

Burn (2001): spring underburns conducted as strip head fires.

Southern Appalachian Mountains Green

River Wildlife Conservation Lands,

western NC (Waldrop et al. 2008*)

Forests largely cut over during 1800s; human

ignited fires common before early 1880s; fire

suppression since early 1900s

Mechanical (late 2001–early 2002): chainsaw felling all tree

stems .1.8-m height and ,10.2-cm DBH as well as all

shrubs, regardless of size.

Burn (2003, 2006): winter ground fires ignited by hand and

by helicopter using strip head fire and spot fire.

South-eastern Piedmont, University of

Clemson Experimental Forest, western

SC (Phillips and Waldrop 2008*)

Row-cropping prevalent 1800–1930; reforesta-

tion 1930–1950, now second-growth loblolly

and shortleaf, pines and mixed pine-hardwood

stands.

Mechanical (late 2000–early 2001): fell with feller buncher,

yard whole trees with rubber-tyre skidders, slash distributed

across the site.

Burn (burn only 2001 and 2004, mechanical þ burn 2002

and 2005): winter ground fires ignited by hand using

strip head fire.

Gulf Coastal Plain, Auburn University of

Solon Dixon Experimental Forest,

southern AL (Outcalt 2005*)

Naturally regenerated longleaf pine.Managed for

timber and naval stores by private family 1880s

to 1981. Sporadic burning

Mechanical (2002): fell with feller-buncher; chainsaw limb,

yard trees length with rubber-tired skidders.

Burn (2002): spring underburn, strip head fire

FloridaCoastal Plain,MyakkaRiver State

Park, west-central FL (Outcalt and Foltz

2004*)

Sparse slash and longleaf pine overstorey with

saw palmetto understorey. Periodic prescribed

burns for last 15 years.

Mechanical (2002): chop with marden aerator pulled by

4-wheel drive rubber tired tractor.

Burn (2000, 2001): spring underburn, strip head fire
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Although the method of application of prescribed fire was fairly

uniform throughout the 12 sites (Table 1), the mechanical
treatments were more variable. At the Central Sierra Nevada
site trees smaller than 25-cm diameter at breast height (DBH)

were masticated to compact the fuelbed; at the Florida Coastal
Plain site the saw palmetto understorey was masticated, leaving
the sparse overstorey untouched; and at the Southern Appala-

chianMountain site all tree stems.1.8-m height and,10.2-cm
DBH were felled, as well as all shrubs, regardless of size. All
other sites applied the mechanical treatment to thin trees in the
overstorey.

Ecological variables were interpreted within six ecosystem
components (Table 2): (1) vegetation, including trees, shrubs,
forbs and grasses; (2) the relevant fuelbed, comprised of the

forest floor, woody fuels and live fuels; (3) soils and the forest
floor, with a focus on carbon, nitrogen, exchangeable ions, soil
exposure and bulk density; (4) fauna, including small mammals,

birds, herpetofauna (reptiles, amphibians) and macroinverte-
brates; (5) bark beetles (on pine-dominated sites) and (6) root
diseases and dwarf mistletoe (Arceuthobium sp.). Most vari-

ables were measured the year before sites were treated, the year
after treatment and for up to 4 years post-treatment. Several
statistical methods were used for analysis, including general
linearmodels for univariate analyses, structural equationmodel-

ling for multivariate questions, and meta-analyses for multi-site
comparisons.

Treatment validation

When applied as distinct treatments, both prescribed fire and
mechanical treatments had consistent short-term effects on

stand structure and fuels across the FFS network (Schwilk et al.
2009*; Stephens et al. 2012a*). Although prescribed fire alone
influenced live stand structure at the two Sierra Nevada sites,
neither basal area nor tree density were greatly affected at most

sites. Prescribed fire also tended to decrease the mass of woody

fuels, particularly for the western sites (Table 3). Mechanical
treatment had nearly opposite effects on stand structure and
fuels, resulting in lower live-tree density and basal area. It either

did not influence, or increased, woody fuel mass. The only
exception to these patterns was at the Florida Coastal Plain site,
where fuel treatments were designed to target the understorey.

A somewhat less consistent picture emerges when we exam-
ine short-term effects of treatments when applied in combina-
tion (first mechanical, then prescribed fire). Although the
mechanicalþ fire treatment affected live tree parameters in

almost the same way as for the mechanical treatment (Table 3),
there were distinct differences between western and most
eastern FFS sites in effects on total fuel mass. Whereas the

mechanicalþ fire treatment decreased woody fuel mass at
nearly every western site, in the east it was only at the Gulf
Coastal Plain site (longleaf pine, Pinus palustris) that the

combined treatment had this effect. Interestingly, in terms of
treatment effectiveness, the south-eastern longleaf pine site
tended to sort best with the western sites, whereas the other

eastern sites were more variable.
In terms of predicted post-treatment fire behaviour, fire

performance analyses conducted at six western sites (excluding
North-eastern Cascades) (Stephens et al. 2009*), and at the

Southern Appalachian Mountain site (Waldrop et al. 2010*)
indicated that the mechanicalþ fire treatment was the most
effective treatment in these dry forest systems. This is consistent

with actual observations on post-wildfire effects after fuel-
reduction treatments (Prichard et al. 2010) and with a recent
meta-analysis of western ponderosa pine (Pinus ponderosa)

forests by Fulé et al. (2012). These results are not surprising,
because for most sites only the mechanicalþ fire treatment
resulted in short-term stand structure and fuelbed conditions –
reduced live-tree density, live basal area and fuel mass – that

Table 2. List of ecosystem components studied, including information on measurement scale, measurement intervals, and sites at which indicated

variables were measured

Component Variable group Measurement scale Measurement intervals Sites

Site characterisation Slope, aspect, global position, topographic

position, elevation

Unit Pre-treatment All

Weather Precipitation, temperature Control core plots Throughout study All

Vegetation Trees, shrubs, grasses, forbs, density,

cover, richness

Plot within unit Pre-, several post-treatment All

Fuels Litter, duff, shrub biomass, woody fuel Transects on grid

within unit

Pre-, several post-treatment All

Soils, forest floor,

dead wood

Characterisation (depth, texture, type) Unit Pre-treatment All

Carbon and nitrogen dynamics cation

exchange soil bulk density

Plots within unit Pre-, several post-treatment All

Vertebrates Songbird density, richness, nest density Unit Pre-, several post-treatment All

Small mammal density, richness Unit Pre-, several post-treatment Western sites; Southern

Appalachian Mountains

Invertebrates Relative abundance, guild composition,

richness

Unit Pre-, several post-treatment South and Central Sierra; South-

eastern Piedmont; Southern

Appalachian Mountains

Bark beetles Activity in pine trees Unit Pre-, several post-treatment Pine sites

Diseases, fungi Root disease, mistletoe Unit Pre-, several post-treatment All

National Fire and Fire Surrogate study Int. J. Wildland Fire 67



would be expected substantially to influence future fire behav-

iour. In contrast, at two other eastern sites at which potential fire
behaviour analyses were conducted – (Central Appalachian
Plateau, Iverson et al. 2003*; South-eastern Piedmont, Mohr

and Waldrop 2006*) – the most effective treatment was pre-
scribed fire alone, probably because slash produced by the
mechanical treatment had not dried sufficiently by the time
prescribed firewas applied, andwas thus not consumed. In terms

of fuel-treatment effectiveness therefore, the mechanicalþ fire
treatment most closely resembled the mechanical-only treat-
ment for these two eastern sites. These patterns of treatment

effectiveness will now serve as the context for analysis and
interpretation of the influence of FFS treatments on other
components of the ecosystem, for the key themes the study

was designed to address.

Ecological consequences

The unique design of the FFS study permits organisation of

findings into five key themes meaningful to managers. The
study was experimental and followed treatment effects through
at least 4 years at some sites, and thus we could examine short-
term effect size and duration. Because the study applied both

prescribed fire and mechanical treatments at the same time and
in the same place, we could compare ecological effects of pre-
scribed fire with those of its principle mechanical surrogates.

The study was multivariate, and thus we could examine trade-
offs among variables for the various treatments, and could also
evaluate how stand structural changes influenced habitat of

plants, invertebrates and vertebrates. Finally, the measurement
of both ‘target’ variables (stand structure, fuelbed), and ‘effects’
variables (soils, fauna, understorey) for at least 4 years post-

treatment for many sites, provides the opportunity to predict
how treatments designed to reduce fuels in the short term
may play out for restoration of dry forest ecosystems in the
longer term.

Effect size and duration

Results from the extensive analytical work of RalphBoerner and

colleagues best illustrate the modest and transient response to
treatment of the great majority of ecological variables we
measured (Fig. 2). Short-term response to treatment was modest

for carbon pools, nitrogen storage, soil chemical properties,
nitrogen turnover and microbial activity (Boerner et al. 2008a*,
2008b*). Although all treatments decreased forest floor C :N

ratio in the short-term, the relative difference between treatment
and control averaged just 8% (Boerner et al. 2008c*). Similarly,
no treatment affected ecosystem nitrogen levels by more than
15% at any site (Boerner et al. 2008a*, 2008b*). Whereas

mechanical and burning treatments modestly decreased carbon
mass in the vegetation and forest floor respectively, there were
few significant treatment effects on either dead wood carbon or

soil carbon (Boerner et al. 2008b*). Although burning did cause
persistent increases in mineral-soil exposure, most other soil
properties were either unaffected by treatment or experienced

verymodest short-term effects (Boerner et al. 2009*). Certainly,
variation among sites in how measurements were taken and
treatment-induced spatial heterogeneity both contributed to the
lack of statistically significant response in many ecological

variables (Boerner et al. 2009*). For the most part however,
surface fires and mechanical treatments used by land managers
to reduce fuel and to restore more fire-resilient stand structure

generally contributed only a small fraction of the variation in
measured properties within the larger context of variation that
arose from topographic, edaphic and historical factors, or from

interannual variation in climate and organism activity (Boerner
2006*).

The relatively light touch of fuel-reduction treatments on

soils and the forest floor was consistent with the modest
response observed for most vertebrate fauna. For example,
little or no response was detected for avian daily survival rates
(Gaines et al. 2010*, North-eastern Cascades), avian

Table 3. Treatment validation

Immediate effect of treatments on live-tree density, basal area and total woody-fuel mass for 12 FFS sites for burn (B), mechanical (M), andmechanicalþ burn

(MB) treatments. m, increase; k, decrease; 0, no trend change for indicated variable, with trend indicated by non-overlapping standard errors. Southern

Cascades site had no pre-treatment data, so effect trends are estimated with the use of control units; Southern Sierra site (Sequoia National Park) did not

implement mechanical treatment – trajectories below combine spring þ autumn burns

Live-tree density Basal area Total woody-fuel mass

Western sites B M MB B M MB B M MB

North-eastern Cascades 0 k k 0 k k k m 0

Blue Mountains 0 k k 0 k k k 0 k
Northern Rocky Mountains 0 k k 0 k k k m 0

Southern Cascades 0 k k 0 k k k m k
Central Sierra Nevada 0 k k 0 k k k 0 k
Southern Sierra Nevada k NA NA k NA NA k NA NA

South-western Plateau 0 k k 0 k k k m k
Eastern sites B M MB B M MB B M MB

Central Appalachian Plateau 0 k k 0 k k 0 m m
Southern Appalachian Mountains 0 0 k 0 0 0 0 0 0

South-eastern Piedmont 0 k k 0 0 k k 0 0

Gulf Coastal Plain 0 k k 0 k k 0 m 0

Florida Coastal Plain 0 0 0 0 0 m 0 0 0
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community structure (Woolf 2003*, Northern Rocky Moun-

tains; Zebehazy et al. 2004*, South-eastern Piedmont), avian
nest survival (Farris et al. 2010a*, multi-site), small mammal
abundance (Amacher et al. 2008*, Central Sierra Nevada;

Greenberg et al. 2006*, Southern Appalachian Mountains),

small mammal biomass (Converse et al. 2006a*) or breeding
bird, shrew or herpetofauna abundance (Greenberg et al.

2007a*, 2007b*; Greenberg and Waldrop 2008*, Southern
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Appalachian Mountains). For the most part, vertebrates evalu-
ated in this study were native species adapted to forests with
frequent, low-intensity, patchy disturbance. Adaptations like

dormancy and dispersal allow many species to avoid direct
effects of disturbance, particularly at the time of year the
treatments are typically applied. In addition, the patchy nature

of fire provides spatial refugeswithinwhich species are shielded
from direct effects, and from which species can recolonise after
disturbance. Thus, measurements of flora and fauna response

averaged to the stand scale will tend to mask lethal effects
observed atmuch smaller scales. Finally, for many larger bodied
or more mobile species like birds, experimental units were not
large enough to capture meaningful population responses

(Robinson 2010*), and this probably obscured many effects
that might have emerged if treatments had been applied at larger
scales. These considerations aside, across a broad spectrum of

the ecosystem, treatment response tended to be subtle or non-
existent, suggesting that a single entry of prescribed fire,
mechanical treatment or mechanicalþ fire is unlikely to cause

major or persistent changes in most ecosystem properties
(Stephens et al. 2012a*).

Even when significant treatment-induced changes were

detected, more often than not conditions returned to pre-
treatment levels in 1 to 3 years, indicating that most responses
were not only subtle, but transient as well (Coates et al. 2008*;
Boerner et al. 2009*). Thus, of 40 key variables measured

immediately after treatment, 19 (47%) showed significant
change after prescribed fire alone, 14 (35%) after mechanical
treatment alone, and 22 (55%) after the mechanicalþ fire

treatment (Fig. 2). Yet of the 30 key variables measured a
second time at least 2 years following the first measurement,
only eight (27%)were significant after fire alone, just five (17%)

after mechanical alone, and only 12 after mechanicalþ fire
treatment (40%). These results indicate that if managers want
to elicit substantive change in dry forest ecosystems, they will
have to apply treatments repeatedly at a high enough frequency

to prevent rebound from the few subtle short-term changes that
do occur.

Most available literature supports the FFS finding that

standard fuel-reduction treatments generally cause modest
effects on most components of dry forest ecosystems, that
intensity of treatment correlates well with magnitude of effect

and that variables that do respond tend to recover quickly to
previous levels. For example, both Fulé et al. (2001) and Abella
and Covington (2004) recorded very minor understorey effects

of fuel-reduction treatments in northern Arizona ponderosa
pine, with the former paper suggesting that drought or herbivory
could have been responsible for observed changes. Similarly,
Wilson et al. (2002), working in longleaf pine, suggested that

landscape position explained more variation in soil carbon than
did restoration treatments, concurring with the general finding
that even repeated prescribed fire has little effect on this

important variable (Moehring et al. 1966; McKee 1982; Richter
et al. 1982). In fact, most studies in eastern deciduous forests
have shown that forest floor variables generally respond little to

fuel-reduction treatments (Wells 1971; Knoepp and Swank
1993; Johnson and Curtis 2001), with litter showing relatively
more response than duff (Elliott and Vose 2005). Available
literature on wildlife demonstrates similar patterns of response,

with many studies finding that the most common factors
explaining variation in response among treatments are site,
interannual variation in population numbers, or heterogeneity

in pre-treatment conditions (Kennedy and Fontaine 2009*). Of
course, in the case of vertebrate species, which typically have
relatively large home ranges, study plot size is a major contrib-

uting factor that constrains our ability to detect differences
among treatments (Robinson 2010*; Robinson and Rompre
2010*).

The magnitude of measured response also tends to correlate
well with the intensity of treatment. In a thoroughmeta-analysis,
Wan et al. (2001) mention that fire severity is a major factor in
explaining variation in soil chemical effects. Similarly, Craw-

ford et al. (2001), Griffis et al. (2001) and Passovoy and Fulé
(2006) suggest that responses of the understorey to prescribed
fire treatments are likely to be much more subtle than those

observed after wildfire. The same correlation has been observed
for mechanical treatments, with Zenner et al. (2006) suggesting
that much more intensive harvesting may be necessary to cause

marked changes in the understorey, especially in forb and grass
components. In terms of soil chemistry, the only study we could
find that reported short-term losses of soil organic carbon

examined effects after clearcutting (Carter et al. 2002), and
estimates of nitrogen loss in vegetation at FFS sites were,30–
50% of those reported after clearcutting in western conifer
forests (Mann et al. 1988) or in eastern deciduous forests

(Clinton et al. 1996). Additionally, the very low soil compaction
effects of mechanical treatments were somewhat lower than that
reported in other studies (Rummer et al. 1997; Klepac et al.

1999), probably because FFS thinning was generally from
below (small trees removed) and heavy machines visited only
a fraction of the ground area. Finally, mechanical treatment had

very little effect on invertebrates at any site, which contrasts
with the nearly complete turnover in species composition of
litter-inhabiting spiders after clearcutting in a western Oregon
conifer ecosystem (McIver et al. 1992). Clearly, treatment

intensity drives magnitude of response, and for the most part,
fuel-reduction treatments applied a light touch to dry forest
ecosystems, even for FFS sites (e.g. Southern Sierra Nevada)

that experienced relatively intense prescribed fires.
Reports from other studies on effect duration were also

consistent with FFS findings. Schoenagel et al. (2004) and

MacKenzie et al. (2004) reported but short-lived shrub response
to fire in other dry forests, andHarvey et al. (1980) showed rapid
recovery of the understorey in giant sequoia (Sequoiadendron

giganteum) groves. Findings from eastern forests are particular-
ly telling, with rapid recovery commonly observed after treat-
ment in the forest floor, the understorey (Wade et al. 1989), the
fuelbed and in both vertebrate and invertebrate fauna. Clearly, it

will require repeated application of both fire and mechanical
treatment in most dry forest systems to maintain ecosystem
trajectories that approach long-term restoration goals (Boerner

et al. 2008d*).

Fire surrogates

Mechanical treatment did not typically serve as a complete
surrogate for fire for most ecological variables, across the
spectrum of ecosystem components that were studied (Fig. 2).
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This is largely because fire has unique effects on ecosystems and
these effects cannot be simulated by changing forest structure in
any other way (Hart et al. 2005*). This is clearly illustrated in an

analysis of fuel treatment effects on carbon loss at six western
USA FFS sites, in which mechanical-only treatments typically
left higher levels of carbon in the fuelbed (forest floor and

downed wood), compared with prescribed fire-only and the
mechanicalþ fire treatments (Stephens et al. 2012b*). Fire was
alsomuchmore effective in killing small-diameter trees through

direct effects (Kobziar et al. 2006*) and through the activities of
bark beetles, which were preferentially attracted to burnt trees
(Schwilk et al. 2006*; Youngblood et al. 2009*; Fettig et al.

2010*;Hessburg et al. 2010*). Enhanced bark beetle numbers in

burned stands attracted bark-foraging birds, especially wood-
peckers of the genus Picoides (Farris et al. 2010b*). Prescribed
fire exposed patches of mineral soil (Agee and Lolley 2006*;

Boerner et al. 2009*) and increased light penetration to the
forest floor, which altered habitat for ectomycorrhizal fungi
(Smith et al. 2005*) and understorey plants (Metlen et al. 2004*;

Phillips et al. 2004*; Albrecht and McCarthy 2006*; Collins
et al. 2007*; Phillips and Waldrop 2008*), favouring species
that preferred drier conditions. Fire caused differences in

microbial functional diversity, with bacterial and fungal
assemblages in burnt stands becoming respectively N- and
C-limited, the opposite of thinned stands (Giai and Boerner
2007*). Fire created greater spatial heterogeneity within stands

(Gundale et al. 2006*; Boerner et al. 2008c*), due to capricious
patterns of fire behaviour, patchiness of trees and surface fuels,
variation in fuel moisture and percent bare ground and variation

in fuelbed structure among tree species (Agee and Lolley 2006*;
Knapp and Keeley 2006*). Fire had unique effects on soil and
forest-floor nitrogen dynamics (Gundale et al. 2005*), and

created patchiness in total inorganic nitrogen (TIN), which in
turn led to increased within-stand plant species diversity
(Gundale et al. 2006*). Heterogeneity in fire effects also
enhanced habitat complexity for arthropods, resulting in higher

species diversity, favouring species adapted to more xeric
conditions (Apigian et al. 2006a*; Ferrenberg et al. 2006*). In
general, for the great majority of ecological variables, the

mechanicalþ fire treatment tended to sort with the burn-only
treatment, whereas themechanical-only treatment tended to sort
more with the un-manipulated control. The one exception to this

general pattern was reported in a meta-analysis conducted on
birds, inwhich 81%of the 31 species evaluated showed the same
directional response to thinning v. low–moderate-severity pre-

scribed fire (Fontaine and Kennedy 2012*). Although the
studies evaluated were short term (,4 years) and small scale
(stand-level), this analysis suggests that thinning may under
certain conditions mimic habitat conditions created by pre-

scribed fire.
Fire is well known to have unique affects on ecosystems

that cannot be emulated with any other management action,

including effects on soil and forest floor chemistry, exposure
of bare mineral soil and creation of substantial within-stand
heterogeneity (Kaufmann et al. 2000; Beaty and Taylor 2001;

Hart et al. 2005*). In particular, several studies have demon-
strated that available nitrogen generally increases immediately
after prescribed fire, and that mechanical treatments have no
such effect, except when stands are clearcut (Hart and

Firestone 1989). Consumption of forest-floor layers increases
the percentage of bare mineral soil, which offers necessary
germination conditions for a wide variety of plant species, and

creates more xeric habitat conditions for invertebrate and
vertebrate fauna. The capricious nature of fire makes it diffi-
cult to fully control, but also results in much enhanced within-

stand heterogeneity, which often leads to increases in richness
of both plant and animal species. This is because many
invertebrates (and presumably understorey plants as well)

have populations that are structured on a relatively fine spatial
scale, on the order of just 10–15m (Niemela et al. 1996;
Apigian et al. 2006b*), which is similar to the scale of
patchiness that fire generally creates (Knapp and Keeley

2006*). The link between plant species richness and total
inorganic nitrogen has not been previously demonstrated
(see Baer et al. 2004) but several studies have shown that

composition of plant (Fitter 1982; Tilman and Pacala 1993;
Reynolds et al. 1997) and animal communities (Sulkava and
Huhta 1998) varies among resource patches at smaller scales,

thus leading to higher diversity at the landscape scale. Simi-
larly, the distinct differences in species composition produced
by fire v. its mechanical surrogates can lead to higher land-

scape species richness (Metlen and Fiedler 2006*), if alternate
treatments are applied in adjacent stands.

Tradeoffs

The multivariate design of the FFS study, in which several key
ecosystem variables were measured simultaneously in the same
plots, allowed us to assess potential tradeoffs that managers may

want to consider when choosing among alternate fuel-reduction
strategies. It is clear from multivariate work that components
within dry forest ecosystems are in some cases tightly linked,

through physical and chemical processes, and through biologi-
cal interactions. We should therefore expect to identify man-
agement tradeoffs at times, because by chance alone we should
observe ‘desirable’ outcomes at odds with undesirable ones,

represented as they are by the variables we measure. We iden-
tified three such potential tradeoffs in which the short-term
benefits of fuel reduction conflicted with other key issues:

(1) although the application of prescribed fire is necessary to
reduce surface fuels, this treatment also tends to reduce coarse
woody debris resources, including snags and large diameter

logs; (2) the intensity of treatment-induced disturbance is related
to the cover and richness of exotic plant species and (3) pre-
scribed fire has the potential to weaken high-value trees, and

simultaneously attract bark beetles, which in some cases killed
weakened trees.

At some sites prescribed fire, alone or in combination with
the mechanical treatment, resulted in a loss of dead wood,

specifically snags and coarse woody debris (e.g. Stephens and
Moghaddas 2005b*; Youngblood et al. 2008*; Hessburg et al.

2010*). Large diameter logs, both sound and rotten, serve as

important critical habitat for ants, beetles and other inverte-
brates, which in turn provide food for a variety of vertebrate
species (Bull 2002). In addition, large diameter snags are a

critical resource for cavity-nesting birds andmammals (Harmon
et al. 1986) and, together with other large woody resources, can
serve as important general habitat for small mammal species
(Kalies et al. 2012). It is for this reason that some authors have
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questioned the wisdom of applying prescribed fire across broad
landscapes of the Interior West (Tiedemann et al. 2000),
especially in forests with mixed fire-return intervals. It is likely

however, that frequent-fire forests may never have supported
high levels of snags or large down woody debris under more
natural fire regimes. Evidence for this supposition stems from

surveys of down woody material in pine forests that have
maintained a more natural fire regime over time (Stephens
et al. 2007). Also, because even very low-intensity prescribed

fires tend to consume snags and large logs (Covington and
Sackett 1984; Stephens and Finney 2002; Torgersen 2002), and
because these kinds of fires are thought to have occurred
frequently in seasonally dry forests, it is logical to assume that

large-diameter woody resources would have been limited in the
pre-settlement world. This is especially true for more decom-
posed log resources, because these are more completely con-

sumed by low-intensity surface fires (Uzoh and Skinner 2009).
Also, because fire effects tend to be spatially heterogeneous, at
least some large-diameter woody material may remain in

patches within most stands immediately after treatment, thus
leaving some habitat for species that require the unique condi-
tions offered by this resource. In any case,managersmaywant to

consider how to balance the need for rapid fuel reduction with
the consequences of decreased quality of faunal habitat, espe-
cially when there are threatened, endangered or sensitive species
involved.

Although the mechanicalþ fire treatment provided the most
rapid progress towards stand-structural goals, disturbance inten-
sity associated with this treatment also caused the greatest

increase in cover of exotic plant species (Dodson and Fiedler
2006*; Collins et al. 2007*; Dodson et al. 2007*; Bartuszevige
and Kennedy 2009*; Schwilk et al. 2009*). Exotic plants can be

‘transformative’ and therefore capable of altering environmental
conditions for other species (Dodson and Fiedler 2006*).
Several studies have demonstrated increases in exotic plant
cover or diversity after prescribed fire, in ponderosa pine forests

of northern Arizona (Griffis et al. 2001; Fulé et al. 2005), the
Black Hills of South Dakota (Wienk et al. 2004), in the Sierra
Nevada (Kane et al. 2010), in coastal conifer forests of the

Pacific Northwest (Thysell and Carey 2001) and in southern
Canada boreal forests (Haeussler et al. 2002). Other studies
however, have reported no differences in exotic plants before

and after prescribed fire (Fornwalt et al. 2003; Wayman and
North 2007), suggesting that mitigating factors may explain
variation in response. These include pre-existing levels of exotic

plant species in areas to be burned, or differences in prescribed
fire intensity. Certainly, disturbance intensity can have marked
effects on levels of exotic plant infestations, as indicated
repeatedly in the FFS study with the mechanicalþ fire treat-

ment, and in other studies with or without fire (Battles et al.

2001). Because exotic plant species can persist at sites for many
years (Keeley et al. 2003), managers in weed-prone areas will

want to consider the landscape context of the treated area, such
as nearby roads, wildland–urban interface and previous exotic
plant invasions (Bartuszevige and Kennedy 2009*), in order to

mitigate introduction and spread of exotic plants.
At the five western FFS sites that experienced significant

levels of bark beetle-caused tree mortality, the great majority of
trees killed were small diameter (Stephens et al. 2012a*), which

is consistent with themanagement target for restoration (Six and
Skov 2009*; Fettig et al. 2010*). However, large-diameter trees
were occasionally killed by bark beetles as illustrated with a

structural equation model developed by Youngblood et al.

(2009)*, working at the Blue Mountains site. The model exam-
ined how treatment-induced changes in the fuelbed influenced

ponderosa pine mortality as caused by bark beetles. In particu-
lar, the mechanical portion of the mechanicalþ fire treatment
increased the mass of both 100-h and 1000-h fuel, and later

burning of these fuels resulted in higher mean fire temperatures,
more severe bole charring of trees and higher mortality of both
large and small trees due to bark beetles (Fig. 3). Interestingly,
treemortalitywas primarily attributed towood borers, which are

not typically known to be mortality agents of ponderosa pine. In
general, whenever fire is reintroduced into dry forest stands after
a long absence, large-diameter trees may be lost, because

accumulated duff at the base of trees may support smouldering
combustion, which may in turn kill fine roots and predispose
trees to subsequent attack by bark beetles (McHugh and Kolb

2003; Parker et al. 2006). Although we saw no evidence of
smouldering duff combustion contributing to bark beetle-caused
tree mortality of large trees, managers may want to consider

protecting large trees in high value areas like campgrounds or
historical old-growth stands, especially if there is evidence of
high levels of slash or deep layers of duff at the base of these
trees. Finally, although bark beetles contribute to short-term

increases in levels of tree mortality, they can be regarded as
keystone species from an ecosystem perspective. For example,
bark beetle populations attract woodpeckers that in turn create

cavities for other wildlife species, disperse wood-decaying
fungi, and thereby help accelerate decomposition of snags
(Farris et al. 2004).

Habitat effects

Any significant management action is likely to favour some

species over others, mostly through changes in habitat brought
about by manipulation of stand structure, the fuelbed and the
forest floor. For the most part, species responded to fuel-

reduction treatments in a manner consistent with their life
history characteristics, demonstrating adaptation to frequent,
low-intensity fire (Metlen et al. 2004*). The conditions created

by fire, such as increased light and heat at the forest floor (Huang
et al. 2007*; Joesting et al. 2007*), exposed bare mineral soil
(Boerner et al. 2009*), decreased shrub cover but increased

grass cover (Collins et al. 2007*; Sharp et al. 2009*) and
increased within-stand heterogeneity (Gundale et al. 2006*;
Knapp and Keeley 2006*), favoured species that can thrive
under drier microhabitat conditions (Metlen et al. 2004*;

Boerner 2006*; Greenberg et al. 2007a*; Phillips and Waldrop
2008*; Kilpatrick et al. 2010*).

Changed conditions within stands can influence species

composition and diversity for a wide spectrum of organisms,
including plants, invertebrates and vertebrates. For example,
working at the North-eastern Cascades site, Dodson and Peter-

son (2010)* reported that all active treatments, especially those
including fire, tended to increase plant species diversity, through
enhanced colonisation of disturbance-adapted species, and
reduced abundance (but not extirpation) of extant species that

72 Int. J. Wildland Fire J. D. McIver et al.



favoured more mesic conditions. At the Central Appalachian

Plateau site, Joesting et al. (2007)* demonstrated that chestnut
(Castanea sp.) seedlings responded favourably to the increased
light conditions of the mechanical-only treatment, by increasing
their net rate of photosynthesis. At the Northern Rocky Moun-

tain site, Dodson et al. (2007)* demonstrated that although
overall native plant species diversity was generally enhanced by
all treatments, burning in particular increased the prevalence of

short-lived species, which depend on disturbed conditions on the
forest floor (exposed mineral soil; light and heat penetration) to
persist in stands that harbor more competitively dominant

species (Steele and Geier–Hayes 1987). At the Central Sierra
Nevada site, burning increased patchiness of mineral soil within
stands, which was sufficient to favour leaf litter arthropod
species that prefer more xeric conditions (Apigian et al.

2006a*). Similarly, treatments that reduce leaf-litter depth and
shade can reduce relative abundances of vertebrates like shrews
and salamanders in the short term (Greenberg et al. 2007a*;

Matthews et al. 2009*, 2010*), probably because these condi-
tions offer fewer refuges from predation and present significant
osmoregulatory challenges to smaller individuals. In contrast,

the same treatments can provide thermoregulatory opportunities
for vertebrates like lizards, who rely on basking to elevate body
heat for efficient foraging (Matthews et al. 2010*). Burning-

induced changes in the distribution of vegetation and other
structural elements of stands can also shift the relative

proportion of bird nesting guilds, from a predominance of

canopy, shrub and ground nesting guilds in thinned or control
stands (Zebehazy et al. 2004*) to cavity-nesting species in
burned stands (Lyons et al. 2008*; Farris et al. 2010b*). The
fact that uncommon, disturbance-dependent species were often

favoured by the application of fire (Apigian et al. 2006a*;
Dodson et al. 2007*; Sharp et al. 2009*) suggests that over
the years lack of fire had allowed these systems to shift

considerably towards more mesic conditions, thus favouring
species that thrive in disturbance-free environments. Presum-
ably, repeated application of prescribed fire over time will lead

to a more balanced community structure for most organism
groups, including species that thrive in disturbance-free patches
and those that depend on the conditions created by disturbance, a
group that includes many threatened, endangered and sensitive

species (Satterthwaite et al. 2002; Norden and Kirkman 2004;
Menges et al. 2006). A good example of this was reported by
Campbell et al. (2007)*, who observed that the rare Diana

Fritillary (Speyeria diana) seems to favour stands treated both
mechanically and by burning, which suggests that widespread
application of fuel-reduction treatments may help restore

healthier populations of rare species that have declined in the
era of fire suppression.

Most available literature supports the FFS conclusion that

fuel-reduction treatments tend to initially favour plant species
that are adapted to low intensity disturbance, through complex
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changes in the canopy, the understorey, the forest floor and the
soil. Mechanical treatments tend to reduce overstorey cover,
which increases light penetration to the forest floor and opens up

resources for competing plant species. Understorey plant spe-
cies that can better tolerate increased light and heat, and can
opportunistically seize suddenly available resources tend to be

favoured, particularly short-lived (Merrill et al. 1980; Laughlin
et al. 2004; Fulé et al. 2005) and early successional species
(Jenkins and Parker 1998). Disturbances can also favour short-

lived, opportunistic species by decreasing or extirpating late
successional species (Halpern and Spies 1995; Battles et al.

2001; Grant and Loneragan 2001). Finally, after observing that
fuel-reduction treatments favour pioneer bryophyte species,

Hardman andMcCune (2010) suggest that these kinds of species
perform a valuable ecosystem service of stabilising the soil
surface immediately after disturbance, thereby reducing its

vulnerability to erosion.
Exactly how structural changes in different layers of the

forest might influence animal species can be difficult to deter-

mine. This is partly because habitat requirements for most
species are poorly known, but also because treatments can have
both direct, immediate effects and indirect, lagged effects. For

example, opening the canopy by overstorey thinning is a direct
way to immediately increase light penetration to the forest floor
(Wilson et al. 1995; Conner et al. 2002;Wood et al. 2004) but an
indirect result of this is that forest floor herbaceous cover can

increase shortly thereafter (Riegel et al. 1995; Wayman and
North 2007). Thus, as long as mechanical treatment leaves the
forest floor intact, species like south-eastern shrews (Sorex

longirostris) and most salamanders will tend to be favoured
by this practice, even if more light reaches their habitat (Pough
et al. 1987; Petranka et al. 1993). In addition, species like certain

butterflies will also tend to be favoured to the extent that
increased herbaceous vegetation provides greater nectar
resource (Thill et al. 2004; Campbell et al. 2007*).

Burning, in contrast, tends to remove both the understorey

and the forest floor in the short term, which tends to favour
ground-dwelling species like lizards and snakes (Zug 1993;
Perison et al. 1997; Matthews et al. 2010*), which prefer bare

mineral soil for basking and to facilitate movement (Renken
2006). In contrast, species that require high levels of ground-
level moisture, such as shrews and salamanders, may decline in

the short term (Matthews et al. 2009*, 2010*). However, over
time, regrowth of the understorey and accumulation of litter will
shift the balance back towards more mesic habitat conditions

even for treatments that cause the greatest initial disturbance
(i.e. thinningþ burning;Matthews et al. 2009*). This dynamism
is the principle reason why time since treatment is such a critical
variable when sampling animal populations – most native

species will not only tend to rebound quickly after treatment
(e.g. Vickers 2003*) but species mixes will be in constant flux
due to shifting habitat conditions over time.

In dry forest systems in which fire has been excluded for
several cycles, species richness of both plants and animals tends
to increasewith fuel-reduction treatment, because higher quality

habitat for disturbance-adapted species suddenly becomes avail-
able (Fiedler et al. 1992;White and Jentsch 2001). In particular,
uncommon species tend to increase in abundance because
disturbance re-establishes conditions and processes that are

critical features of their evolutionary history (Dodson et al.

2007*). In fact, fire exclusion has been implicated as a major
factor in reduced understory species richness in frequent-fire

forests of the western US (ponderosa pine, northern Arizona,
Covington and Moore 1994; Fulé et al. 1997; ponderosa pine,
Black Hills, South Dakota, Laughlin et al. 2004; Wienk et al.

2004). This same pattern has been observed for invertebrates,
with most increases in species number occurring within the
subset of species that favour higher levels of disturbance

(Apigian et al. 2006a*). Findings from the FFS study and the
supporting literature are therefore consistent in concluding that
reintroduction of fire into dry forest systemswill result in habitat
shifts and enhanced heterogeneity that will likely result in more

balanced species compositions of both plants and animals.

Restoration

To date, the FFS study has measured only short-term effects of
alternative fuel-reduction treatments, with insufficient time
having elapsed since treatment to assess long-term progress

toward restoration goals (McIver and Weatherspoon 2010*).
Nevertheless, measurements taken up to 4 years after treatment
are sufficient to make four distinct predictions on what might

happen if managers embark on long-term restoration plans in
dry forest systems: (1) Restoration of conditions similar to those
thought to have prevailed before settlement will require per-
sistent management, featuring repeat entries of both mechanical

treatment and prescribed fire; (2) eastern forests will require
much more frequent applications of both mechanical treatment
and fire, due to their greater productivity and the need to control

a more diverse set of competing plant species; (3) application of
mechanical treatments alone may gradually cause dry forest
systems to diverge from states maintained by fire alone, despite

the observation of generally subtle effects of both treatments in
the short term and (4) long-term monitoring of key ecosystem
components needs to accompany persistent management, in
order to gauge whether or not projected goals are met, and to

make course corrections if needed.
Overall, FFS findings indicate that meaningful progress

towards long-term restoration goals will benefit from amanage-

ment scenario that features repeat entries of both prescribed fire
and mechanical treatments over time (Boerner et al. 2008d*;
Iverson et al. 2008*). It is clear that unless prescribed fire can be

applied frequently enough and with a high enough intensity to
remove vegetation that has encroached with fire suppression,
mechanical treatments will at least occasionally be needed to

maintain overstorey density and basal area at desirable levels
(Fiedler et al. 2010*; Youngblood 2010*). Prescribed fire needs
to be applied more frequently because this practice influences
components (fuels) that have a higher turnover rate than those

influenced by mechanical treatment (overstorey). This finding
stems from the consistent observation that even the most
aggressive fuel-reduction treatments have subtle and transient

effects on most key ecosystem variables (Fig. 2). Several
understorey studies support this finding, indicating that multiple
entries are needed to restore systems to within the historical

range of variability (Harrington and Edwards 1999; Metlen and
Fiedler 2006*; Iverson et al. 2008*; Waldrop et al. 2008*). For
example, Laughlin et al. (2008) reported that it took 11 years of
multiple prescribed fires to restore historical understorey
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community structure in a ponderosa pine-bunchgrass system.
Similarly, Dey and Hartman (2005) noted that multiple fires
were necessary in younger dry oak forests in the Missouri

Ozarks to favour oak and hickory (Carya sp.) relative to their
competitors. In some cases however, restoration goals may be
even more difficult to achieve: Waldrop et al. (1992) reported

that 43 years of frequent burning (3–5-year intervals) in pine
forests of the southern coastal plain did little to change under-
storey plant species composition.

Seasonally dry forests of the eastern US differ from western
forests inmanyways, butmost importantly, they tend to bemore
productive and diverse. Greater productivity means that eastern
forests rebound more quickly after disturbance, and therefore

require much more frequent application of restoration treat-
ments. In particular, high decomposition rates in hardwood
forests can return fine-fuel mass to initial conditions within a

few years (Graham and McCarthy 2006*) and rapid sprouting
and growth of undesirable species can quickly return stands to
initial conditions (Waldrop et al. 2008*; Outcalt and Brockway

2010). In fact, during the FFS study period, four of the five
eastern sites required at least two prescribed fires (Table 1),
whereas none of the seven western sites demonstrated rebound

from disturbance that was significant enough to require re-entry
by the end of the study period (2008).

Although it is true that even fairly aggressive mechanical or
burning treatments caused subtle and transient effects for most

variables, it is also true that mechanical treatments were not
surrogates for fire in many cases. Therefore, if two equivalent
stands received persistent application of either mechanical

treatment or burning at a high enough frequency to prevent
rebound, the two stands would diverge from one another within
two or three treatment cycles. It is for this reason that restoration

towards conditions thought to prevail before European settle-
ment will only occur with both burning and mechanical treat-
ments applied in tandem: burning because fire is such a unique
process and cannot be emulated in any other way (Weaver

1943), and mechanical treatment because overstorey adjust-
ments will occasionally need to be made due to constraints
placed on the intensity of prescribed fire. Of course, if current

constraints on prescribed fire operations were relaxed such that
summer burnswere possible, burning by itself could probably be
used in some cases to maintain stand structure over time.

Evidence from the short-term measurements of the FFS
identifies the need for repeat entries over time, in order to
achieve long-term restoration goals. But it would be unwise

simply to extrapolate observed short-term responses over longer
periods of time, because trajectories of many variables may be
non-linear. For example, in a study of oak flatwoods that had
been burned every 3–4 years for 30 years, Vance and Henderson

(1984) measured reduced nitrogen mineralisation rates and
attributed these to slow but persistent changes in the quality of
organicmatter, possibly through conversion of carbon intomore

recalcitrant forms (like charcoal) over time (Ponomarenko and
Anderson 2001). Another reasonwhy short-term results may not
scale to the long term is thatweather patterns observed in a short-

term study may turn out to be a primary factor in explaining
results. A possible example of this is the contrasting results on
long-term understorey response to treatment, in which Busse
et al. (2000) and Laughlin et al. (2008) found significant and

lasting effects, whereas Fulé et al. (2002) did not, and attributed
lack of response to a prolonged drought in northern Arizona
during the study period. In any case, to the extent that repeat

entries cause changes in the quality of other variables aswell, the
subtle and transient short-term effectsmeasured in the FFS study
will not necessarily scale linearly over longer periods of time.

Only long-term monitoring will provide meaningful, reliable
information on the effects of land-management scenarios that
are implemented for the long term (Boerner et al. 2008c*;

McIver and Weatherspoon 2010*).

Conclusion

Current conditions of many seasonally dry forests in the US
leave them uncharacteristically susceptible to high-severity
wildfire. Alternative fuel-reduction treatments have been used

for decades to mitigate fire hazard in these forests. The National
Fire and Fire Surrogate study was designed to bolster informa-
tion on how these practices influence whole ecosystems.

When applied under prescription, both surface fire and its
mechanical surrogates are generally successful inmeeting short-
term fuel-reduction objectives, changing stand structure and

fuelbeds such that treated stands are potentially more resilient to
moderate-intensity wildfire. Mechanical treatment followed by
prescribed fire is most effective in altering stand structure,
reducing fuels and lowering fire hazard, but both mechanical

treatment and prescribed fire alone can reduce potential fire
intensity in some cases.

Most available evidence suggests that these desirable objec-

tives are typically accomplished with few unintended conse-
quences, as most ecosystem components exhibit very subtle
effects, or no measurable effects at all. Significant effects are

more prevalent and lasting in the vegetation, followed by the
forest floor, dead wood and soils. Whereas exotic plants tend to
increase with levels of treatment disturbance, overall under-
storey species richness also increases, especially fire-adapted

plants and those plants that are favoured by more open, xeric
forest floor conditions. Though mineral soil exposure, pH,
exchangeable cations and total inorganic nitrogen respond to

treatment in the short term, initial changes tend to disappear or
diminish after only a few years. Other soil variables including
bulk density, soil carbon, dead wood carbon and soil nitrogen

exhibit extremely subtle response to treatment. Bird species
show subtle response as well, but bark-foraging and cavity-
nesting birds tend to be more attracted to stands that received a

burning treatment. Invertebrate communities also exhibit subtle
short-term response, but fire tends to cause distinctly different
effects compared with mechanical treatment, primarily because
fire creates much more patchy forest-floor conditions. Although

bark beetles often take advantage of fire-weakened trees, and
can therefore cause additional tree mortality, the percentage of
trees killed by beetles is usually very low and tends to be limited

to smaller-diameter trees.
Desired treatment effects on stand structure and fuels tend to

be transient, just like effects on most other ecosystem variables,

indicating that once fuel-reductionmanagement starts managers
need to be persistent with repeat entries into the future, espe-
cially in the faster-growing eastern forests. For most variables,
mechanical treatments are not surrogates for fire, and so if
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mechanical treatments are consistently applied alone, stands
may diverge considerably over time compared with stands that
receive at least occasional prescribed fire.

In general, results of the multisite, multivariate National Fire
and Fire Surrogate study indicate that although certain
treatment-related tradeoffs within ecosystems are inevitable

(e.g. treatment intensity v. exotic plant species or coarse woody
material) land managers can move forward with fuel-reduction
work, confident that these practices will be unlikely to cause

substantial unintended consequences in seasonally dry forest
ecosystems in the short term. Because mechanical treatments
are not complete surrogates for fire, however, and because most
effects tend to be transient, repeat treatments that include at least

occasional prescribed fire will be necessary to restore dry forest
systems in the long run.

Finally, it is important to note that because dry forest

ecosystems are so idiosyncratic, and because the exact pattern
of weather before and after treatment will likely influence
details of treatment response, it will always be difficult to

predict exactly what will happen when alternative fuel-
reduction treatments are applied. Fortunately, we already have
a tool that allows managers to adjust prescriptions through

time, based on what they see after prior treatments. Adaptive
management, applied with a blend of scientific rigor and
management practicality, can lead managers through the long
process of restoration even in systems that are complex and

dynamic. Variables chosen tomeasure need not be extensive but
would probably need to include variables that validate treat-
ments, variables that reflect damage to the soil resource, and

variables that monitor key species such as invasive plants and
TES species.

The analyses conducted by FFS researchers were extensive

and deep for most sites and for most ecosystem components.
Nonetheless, numerous opportunities are available for further
analysis with the existing dataset, particularly in the realm of
multivariate studies that would likely be successful in identify-

ing and elucidating relationships among variables within and
among ecosystem components. Consequently, the entire FFS
database, complete with explanatory meta-data, is now avail-

able at the US Forest Service Data Repository (http://www.fs.
usda.gov/rds/archive/, accessed 21 September 2012).
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