424 research outputs found

    The chronostratigraphy of Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada

    Get PDF
    Aeolian periglacial sand deposits are common in the Tuktoyaktuk Coastlands of Western Arctic Canada. Regionally extensive and thick aeolian sand-sheet deposits have been observed in two major stratigraphic settings: within a sand unit characterized by large aeolian dune deposits; and interbedded with glaciofluvial outwash from the Laurentide Ice Sheet (LIS). Small, localized sand sheets have also been observed along the tops of sandy bluffs, within sequences of drained thermokarst lakes deposits and as an involuted veneer above buried basal ice of the LIS. On the basis of radiocarbon and optically stimulated luminescence (OSL) dates from preserved periglacial aeolian sand sheets and dunes a regional chronostratigraphy is presented which indicates that both extensive dunes and sand sheets accumulated mainly between ca 30 and 13 ka. A switch to dominantly sand-sheet aggradation at ca 14–13 ka, with sand sheets forming widely until ca 8 ka, is attributed to (a) surface armouring by glacial deposits associated with the advance of the LIS; and (b) amelioration of the climate from cold aridity. An absence of OSL dates between ca 8 and 1 ka suggests that sand sheets stabilized during much of the Holocene. Local sand-sheet aggradation during recent centuries has occurred near sandy bluffs and on the floors of drained thermokarst lakes. The OSL dates constrain the maximum extent of the LIS in the Tuktoyaktuk Coastlands to Marine Isotope Stage 2

    Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada

    Get PDF
    Sand-sheet deposits of full-glacial age in the Tuktoyaktuk Coastlands, western Arctic Canada, contain syngenetic sand veins 1-21 cm wide and sometimes exceeding 9 m in height. Their tall and narrow, chimney-like morphology differs from that of known syngenetic ice wedges and indicates an unusually close balance between the rate of sand-sheet aggradation and the frequency of thermal-contraction cracking. The sand sheets also contain rejuvenated (syngenetic) sand wedges that have grown upward from an erosion surface. By contrast, sand sheets of postglacial age contain few or sometimes no intraformational sand veins and wedges, suggesting that the climatic conditions were unfavourable for thermal-contraction cracking. Beneath a postglacial sand sheet near Johnson Bay, sand wedges with unusually wide tops (3.9 m) extend down from a prominent erosion surface. The wedges grew vertically downward during deflation of the ground surface, and represent anti-syngenetic wedges. The distribution of sand veins and wedges within the sand sheets indicates that the existence of continuous permafrost during sand-sheet aggradation can be inferred confidently only during full-glacial conditions

    Heave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0°C

    Get PDF
    To elucidate the early stages of heave, settlement and fracture of intact frost-susceptible rock by temperature cycling above and below 0°C, two physical modelling experiments were performed on 10 rectangular blocks 450 mm high of fine-grained, soft limestone. One experiment simulated 21 cycles of bidirectional freezing (upward and downward) of an active layer above permafrost, and the other simulated 26 cycles of unidirectional freezing (downward) of a seasonally frozen bedrock in a non-permafrost region. Heave and settlement of the top of the blocks were monitored in relation to rock temperature and unfrozen water content, which ranged from almost dry to almost saturated. In the bidirectional freezing experiment, heave of the wettest block initially occurred abruptly at the onset of freezing periods and gradually during thawing periods (summer heave). After the crossing of a threshold marked by the appearance of a macrocrack in the upper layer of permafrost, summer heave increased by an order of magnitude as segregated ice accumulated incrementally in macrocracks, interrupted episodically by abrupt settlement that coincided with unusually high air temperatures. In the unidirectional freezing experiment, the wet blocks heaved during freezing periods and settled during thawing periods, whereas the driest blocks showed the opposite behaviour. The two wettest blocks settled progressively during the first 15 freeze-thaw cycles, before starting to heave progressively as macrocracks developed. Four processes, operating singly or in combination in the blocks account for their heave and settlement: (1) thermal expansion and contraction caused heave and settlement when little or no water-ice phase change was involved; (2) volumetric expansion of water freezing in situ caused short bursts of heave of the outer millimetres of wet rock; (3) ice segregation deeper in the blocks caused sustained heave during thawing and freezing periods; and (4) freeze-thaw cycling caused consolidation and settlement of wet blocks prior to macrocracking in the unidirectional freezing experiment. Rock fracture developed by growth of segregated ice in microcracks and macrocracks at depths determined by the freezing regime. Overall, the heave, settlement and fracture behaviour of the limestone is similar to that of frost-susceptible soil

    Development of a correlated Fe‐Mn Crust stratigraphy using Pb and Nd isotopes and its application to paleoceanographic reconstruction in the Atlantic

    Get PDF
    Eight ferromanganese crust samples spanning the complete depth range of Tropic Seamount in the north‐east Atlantic were analysed for Pb and Nd isotopes to reconstruct water mass origin and mixing over the last 75 Ma. Pb isotopes were determined by LA‐MC‐ICP‐MS, which enables the rapid production of large, high spatial‐resolution datasets. This makes it possible to precisely correlate stratigraphy between different samples, compare contemporaneous layers, and create a composite record given the abundance of hiatuses in crusts. Pb and Nd isotope data show the influence of various oceanic and continental end‐members in the north‐east Atlantic Ocean. This reflects its evolution from a restricted, isolated basins in the Late Cretaceous with influxes from the Tethys Ocean, to an increasingly well‐mixed, large‐scale basin, with a dominant Southern Ocean signature until the Miocene. Less‐radiogenic Nd isotope signatures suggest Labrador Sea Water influenced the north‐east Atlantic basin as early as 17‐15 Ma, flowing through a northern route such as the Charlie‐Gibbs Fracture Zone. Pb and Nd isotopes highlight the increasing influence of Saharan aeolian dust input about 7 Ma, imparting a less‐radiogenic excursion to the binary mixing between North Atlantic water masses and riverine discharge from West and Central Africa. This highlights the influence of aeolian dust input on the open ocean Pb and Nd budget, and supports an early stage of North African aridification in the Late Miocene. This signature is overprinted about 3 Ma to the present by a strong North Atlantic Deep Water signature following the onset of Northern Hemisphere glaciation

    Middle and Late Pleistocene environmental history of the Marsworth area, south-central England

    Get PDF
    To elucidate the Middle and Late Pleistocene environmental history of south-central England, we report the stratigraphy, sedimentology, palaeoecology and geochronology of some deposits near the foot of the Chiltern Hills scarp at Marsworth, Buckinghamshire. The Marsworth site is important because its sedimentary sequences contain a rich record of warm stages and cold stages, and it lies close to the Anglian glacial limit. Critical to its history are the origin and age of a brown pebbly silty clay (diamicton) previously interpreted as weathered till. The deposits described infill a river channel incised into chalk bedrock. They comprise clayey, silty and gravelly sediments, many containing locally derived chalk and some with molluscan, ostracod and vertebrate remains. Most of the deposits are readily attributed to periglacial and fluvial processes, and some are dated by optically stimulated luminescence to Marine Isotope Stage (MIS) 6. Although our sedimentological data do not discriminate between a glacial or periglacial interpretation of the diamicton, amino-acid dating of three molluscan taxa from beneath it indicates that it is younger than MIS 9 and older than MIS 5e. This makes a glacial interpretation unlikely, and we interpret the diamicton as a periglacial slope deposit. The Pleistocene history reconstructed for Marsworth identifies four key elements: (1) Anglian glaciation during MIS 12 closely approached Marsworth, introducing far-travelled pebbles such as Rhaxella chert and possibly some fine sand minerals into the area. (2) Interglacial environments inferred from fluvial sediments during MIS 7 varied from fully interglacial conditions during sub-stages 7e and 7c, cool temperate conditions during sub-stage 7b or 7a, temperate conditions similar to those today in central England towards the end of the interglacial, and cool temperate conditions during sub-stage 7a. (3) Periglacial activity during MIS 6 involved thermal contraction cracking, permafrost development, fracturing of chalk bedrock, fluvial activity, slopewash, mass movement and deposition of loess and coversand. (4) Fully interglacial conditions during sub-stage 5e led to renewed fluvial activity, soil formation and acidic weathering

    Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount.

    No full text
    Seamounts, often rising hundreds of metres above surrounding seafloor, obstruct the flow of deep-ocean water. While the retention of deep-water by seamounts is predicted from ocean circulation models, its empirical validation has been hampered by large scale and slow rate of the interaction. To overcome these limitations we use the growth of planktonic bacteria to assess the retention time of deep-ocean water by a seamount. The selected Tropic Seamount in the North-Eastern Atlantic is representative for the majority of isolated seamounts, which do not affect the surface ocean waters. We prove deep-water is retained by the seamount by measuring 2.4* higher bacterial concentrations in the seamount-associated or 'sheath'-water than in deep-ocean water unaffected by seamounts. Genomic analyses of flow-sorted, dominant sheath-water bacteria confirm their planktonic origin, whilst proteomic analyses of the sheath-water bacteria, isotopically labelled in situ, indicate their slow growth. According to our radiotracer experiments, it takes the sheath-water bacterioplankton 1.5 years to double their concentration. Therefore, the seamount should retain the deep-ocean water for 1.8 years for the deep-ocean bacterioplankton to grow to the 2.4* higher concentration in the sheath-water. We propose that turbulent mixing of the seamount sheath-water stimulates bacterioplankton growth by increasing cell encounter rate with ambient dissolved organic molecules
    corecore