58 research outputs found

    Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Full text link
    Background: A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs) - including pathogenicity islands (PAIs) - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial) islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT). Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results: To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC) strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K), an origin of transfer (oriTRP4) and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI) or integrated site-specifically into the recipient’s chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions: Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands

    Secondary Chromosomal Attachment Site and Tandem Integration of the Mobilizable Salmonella Genomic Island 1

    Get PDF
    The Salmonella genomic island 1 is an integrative mobilizable element (IME) originally identified in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) DT104. SGI1 contains a complex integron, which confers various multidrug resistance phenotypes due to its genetic plasticity. Previous studies have shown that SGI1 integrates site-specifically into the S. enterica, Escherichia coli, or Proteus mirabilis chromosome at the 3′ end of thdF gene (attB site)

    A Toxin–Antitoxin System Promotes the Maintenance of an Integrative Conjugative Element

    Get PDF
    SXT is an integrative and conjugative element (ICE) that confers resistance to multiple antibiotics upon many clinical isolates of Vibrio cholerae. In most cells, this ∼100 Kb element is integrated into the host genome in a site-specific fashion; however, SXT can excise to form an extrachromosomal circle that is thought to be the substrate for conjugative transfer. Daughter cells lacking SXT can theoretically arise if cell division occurs prior to the element's reintegration. Even though ∼2% of SXT-bearing cells contain the excised form of the ICE, cells that have lost the element have not been detected. Here, using a positive selection-based system, SXT loss was detected rarely at a frequency of ∼1×10−7. As expected, excision appears necessary for loss, and factors influencing the frequency of excision altered the frequency of SXT loss. We screened the entire 100 kb SXT genome and identified two genes within SXT, now designated mosA and mosT (for maintenance of SXT Antitoxin and Toxin), that promote SXT stability. These two genes, which lack similarity to any previously characterized genes, encode a novel toxin-antitoxin pair; expression of mosT greatly impaired cell growth and mosA expression ameliorated MosT toxicity. Factors that promote SXT excision upregulate mosAT expression. Thus, when the element is extrachromosomal and vulnerable to loss, SXT activates a TA module to minimize the formation of SXT-free cells

    Molecular characterization of Vibrio cholerae outbreak strains with altered El Tor biotype from southern India

    Get PDF
    Forty-four Vibrio cholerae isolates collected over a 7-month period in Chennai, India in 2004 were characterized for gene traits, antimicrobial susceptibility and genomic fingerprints. All 44 isolates were identified as O1 El Tor Ogawa, positive for various toxigenic and pathogenic genes viz. ace, ctxB, hlyA, ompU, ompW, rfbO1, rtx, tcpA, toxR and zot. Nucleotide sequencing revealed the presence of cholera toxin B of classical biotype in all the El Tor isolates, suggesting infection of isolates by classical CTXΦ. Antibiogram analysis showed a broad-spectrum antibiotic resistance that was also confirmed by the presence of resistant genes in the genomes. All isolates contained a class 1 integron and an SXT constin. However, isolates were sensitive to chloramphenicol and tested negative for the chloramphenicol resistant gene suggesting a deletion in SXT constin. Fingerprinting analysis of isolates by ERIC- and Box PCR revealed similar DNA patterns indicating the clonal dissemination of a single predominant V. cholerae O1 strain throughout the 2004 outbreak in Chennai

    Selective Pressures to Maintain Attachment Site Specificity of Integrative and Conjugative Elements

    Get PDF
    Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.United States. Public Health Service (Grant GM050895

    Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family : the line between ICEs and conjugative plasmids is getting thinner

    Get PDF
    Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs

    Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island

    Get PDF
    Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transfered. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens

    The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation

    Get PDF
    Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer

    Gain and Loss of Phototrophic Genes Revealed by Comparison of Two Citromicrobium Bacterial Genomes

    Get PDF
    Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a ‘photosynthesis gene cluster’ (abbreviated as the PGC) with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes), Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA) in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy
    corecore