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Abstract

Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in
bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including
antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-
specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can
also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the
consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and
prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that
integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host
cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1.
Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three
hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome.
Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have
integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.
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Introduction

Integrative and conjugative elements (ICEs, also known as

conjugative transposons) are mobile genetic elements that encode

conjugation machinery that mediates their transfer from cell to

cell. Most characterized ICEs were identified because they carry

additional genes that confer phenotypes to the host cell. These can

be genes involved in pathogenesis, symbiosis, and antibiotic

resistances, among others {reviewed in [1]}. ICEs are typically

found integrated in the host bacterial chromosome and can excise

to form a circular product that is the substrate for conjugation.

Their ability to spread to other organisms through conjugation

makes ICEs important agents of horizontal gene transfer in

bacteria, and they appear to be more prevalent than plasmids [2].

ICEs can also facilitate transfer (mobilization) of other genetic

elements [1,3,4].

Some ICEs have a specific integration (attachment or insertion)

site in the host genome whereas others are more promiscuous and

can integrate into many locations. For example, SXT, an ICE in

Vibrio cholera has one primary site of integration in the 59 end of

prfC [5]. In contrast, Tn916 has a preference for AT-rich DNA in

many different hosts and integrates into many different chromo-

somal sites [6,7]. Each strategy for integration has its benefits. The

more promiscuous elements can acquire a wider range of genes

adjacent to the integration sites, and their spread is not limited to

organisms with a specific attachment site. On the other hand, site-

specific elements are much less likely to disrupt important genes.

The attachment site for these elements is typically in a conserved

gene, often a tRNA gene [8,9]. If sequences at the end of the

integrating element are identical with the 39 end of the gene

(which is often the case), then gene function is not disrupted.

Integration into conserved genes makes it likely that many

organisms will have a safe place for these elements to integrate.

We wished to learn more about the ability of site-specific ICEs to

integrate into secondary integration (or attachment) sites, partic-

ularly if the primary site is not present in a genome. We wondered

if an ICE could function normally in a secondary site and if there

was any effect on the host.

We used ICEBs1 of Bacillus subtilis to analyze effects of

integration into secondary attachment sites. ICEBs1 is a site-

specific conjugative transposon that is normally found integrated

into a tRNA gene (trnS-leu2) [10,11]. ICEBs1 is approximately

20 kb (Figure 1), and many of its genes are similar to genes in

other ICEs, including those in Tn916 [11,12], the first conjugative

transposon identified [13,14]. It is not known what properties or

advantages ICEBs1 confers on host cells, and naturally occurring

ICEBs1 is not known to carry genes involved in antibiotic

resistances, virulence, or metabolism. However, because of the

conservation of many of its functions, the ease of manipulating B.

subtilis, and the high efficiency of experimental induction of gene

expression, ICEBs1 is extremely useful for studying basic and

conserved properties of ICEs.

Induction of ICEBs1 gene expression leads to excision from the

chromosome in .90% of the cells, autonomous rolling-circle
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replication of ICEBs1, and mating in the presence of appropriate

recipients [10,11,15]. After excision from the chromosome,

autonomous replication of ICEBs1 is needed for its stability

during cell growth and division [15]. In addition, excision is not

needed for replication; ICEBs1 that is unable to excise from the

chromosome undergoes autonomous unidirectional replication

following induction of ICEBs1 gene expression [15]. At least some

other ICEs appear to undergo autonomous replication [1,16–18].

In addition, the genes in ICEBs1 that are required for autonomous

replication are conserved [19]. Based on these observations and

the properties of ICEBs1, we suspect that many ICEs undergo

rolling circle replication and use the origin of transfer as an origin

of replication and the cognate conjugative relaxase as a replicative

relaxase [3,19].

Our aim was to examine the physiological consequences of

integration of ICEBs1 into secondary attachment sites. Previous

work showed that in the absence of its primary attachment site

(attB in the gene for tRNA-leu2), ICEBs1 integrates into secondary

attachment sites [10]. Seven different sites were identified and

characterized previously, providing insight into the chromosomal

sequences needed for integration [10]. Work presented here

extends these findings by identifying additional secondary sites,

evaluating the ability of ICEBs1 to excise from these sites, and

determining the effects of integration at these sites on host cells.

Our results indicate that integration of ICEBs1 in secondary

integration sites is deleterious to ICEBs1 and to the host cell.

Excision and spread of ICEBs1 from the secondary sites was

reduced or eliminated and there was a drop in cell viability due to

autonomous replication of ICEBs1 that was defective in excision.

These effects likely provide strong selective pressure for insertions

into sites from which ICEBs1 can excise and against the

propagation of insertions in secondary sites.

Results

Identification of secondary sites of integration of ICEBs1
We identified 27 independent insertions of ICEBs1 into

secondary integration sites in the B. subtilis chromosome. Briefly,

these insertions were identified by: 1) mating ICEBs1 into a

recipient strain deleted for the primary attachment site attB

(located in the tRNA gene trnS-leu2), 2) isolating independent

transconjugants, and 3) determining the site of insertion in each of

27 independent isolates. The frequency of stable acquisition of

ICEBs1 by strains missing attB was reduced to ,0.5–5% of that of

strains containing attB {Materials and Methods, and [Materials

and Methods, and 10]}.

There were 15 different secondary integration sites for ICEBs1

among the 27 independent transconjugants (Figure 2). Seven of

the 15 sites were described previously [10], and eight additional

sites are reported here. There appears to be no absolute bias for

Author Summary

Integrative and conjugative elements (ICEs) are mobile
genetic elements that transfer DNA between bacteria,
driving bacterial evolution and the acquisition of new
traits, including antibiotic resistances. ICEs normally reside
integrated in a host genome, but can excise and transfer to
recipient cells. Many ICEs are site-specific, predominantly
integrating into a single ‘‘attachment’’ site. Others are
more promiscuous, capable of integrating into many
different sites. Little is known about the consequences of
a site-specific ICE integrating into an alternative attach-
ment site, or the selective pressures that maintain the
specificity of integration for ICEs with a single attachment
site. We found that integration of ICEBs1, a site-specific ICE
in Bacillus subtilis, into alternative attachment sites was
detrimental to both ICEBs1 and the host cell. Excision of
ICEBs1 from alternative attachment sites was reduced or
eliminated, thereby limiting mobility of the element. In
addition, when ICEBs1 gene expression was activated, cell
proliferation and viability dropped if ICEBs1 was in an
alternative attachment site. This drop was due to
autonomous replication of ICEBs1 that was stuck in the
host chromosome. These detrimental effects likely provide
strong selective pressure to maintain attachment site
specificity of ICEBs1 and likely many other site-specific ICEs.

Figure 1. Map of ICEBs1 and its derivatives. A. The linear genetic map of ICEBs1 integrated in the chromosome. Open arrows indicate open
reading frames and the direction of transcription. Gene names are indicated above or below the arrows. The origin of transfer (oriT) is indicated by a
thick black line overlapping the 39 end of conQ and the 59 end of nicK. oriT functions as both the ICEBs1 origin of transfer and origin of replication
[15,23]. The thin black arrow indicates the direction of ICEBs1 rolling-circle replication. The small rectangles at the ends of ICEBs1 represent the 60 bp
direct repeats that contain the site-specific recombination sites in the left and right attachment sites, attL and attR, that are required for excision of
the element from the chromosome. B–F. Various deletions of ICEBs1 were used in this study. Thin horizontal lines represent regions of ICEBs1 that are
present and gaps represent regions that are deleted. Antibiotic resistance cassettes that are inserted are not shown for simplicity. B. rapI and phrI are
deleted and a kanamycin resistance cassette inserted. C. The right attachment site (attR) is deleted and a tetracycline resistance cassette inserted. D.
The genes from the 59 end of nicK and into yddM are deleted and a chloramphenicol resistance cassette inserted. E. The genes from the 59 end of
ydcS and into yddM are deleted and a chloramphenicol resistance cassette inserted. F. The entire coding sequence of helP (previously known as ydcP)
and 35 bp in the helP-ydcQ intergenic region is removed. There is no antibiotic resistance cassette in this construct.
doi:10.1371/journal.pgen.1003623.g001
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the orientation of ICEBs1 insertions with respect to the direction of

the replication forks, although 10 of the 15 insertions were

oriented such that the direction of ICEBs1 replication was co-

directional with the direction of the chromosomal replication forks

(Figure 2A). Of the 27 independent transconjugants, 11 (41%) had

ICEBs1 inserted in a site in yrkM (designated yrkM::ICEBs1)

(Figure 2B), a gene of unknown function. Three of the 27 (11%)

transconjugants had ICEBs1 inserted in a site in mmsA (encoding

an enzyme involved in myo-inositol catabolism [20]). The site in

yrkM is the most similar to the primary attachment site attB,

differing by two base pairs. The site in mmsA differs from attB by

three base pairs (Figure 2B). Two insertions were in a site in yqhG,

although in opposite orientations. These are counted as two

different sites since the sequence in each orientation is different

(Figure 2B). The remaining 11 insertions were in unique sites,

either in genes or intergenic regions (Figure 2B). None of the

identified insertions caused a noticeable defect in cell growth in

rich (LB) or defined minimal medium when ICEBs1 was repressed.

Furthermore, none of the insertions were in tRNA genes

(including redundant, nonessential tRNA genes) that are common

integration sites for many ICEs [8,9].

Some of the secondary insertion sites were similar to and others

quite different from the primary ICEBs1 attachment site

(attBICEBs1, or simply attB). attB contains a 17 bp stem-loop

sequence consisting of a 5 bp inverted repeat separated by 7 bp

(Figure 2C). We aligned and compared the sequences of the 15

different secondary attachment sites and searched for a common

motif using WebLogo 3.3 (http://weblogo.threeplusone.com/)

[21]. For each secondary attachment site, we provided an input of

26 bp that included the region of the stem-loop sequence (17 bp,

inferred from the sequence of attB) and a few base pairs upstream

and downstream. The conserved sequences were largely in the

17 bp that were originally proposed to comprise attB [10],

including several positions in the loop region of the stem-loop

sequence, the 5 bp inverted repeats, and perhaps 1–2 additional

base pairs downstream of the stem-loop (Figure 2C). There was

considerable sequence diversity among the 15 secondary integra-

tion sites and the primary site attB, and no single position was

conserved in all the secondary sites (Figure 2B). In some cases (e.g.,

insertions in yrkM, mmsA, yqhG, and srfAA) there are only 2–3 base

pairs that are different between the secondary site and attB. In

contrast, insertion sites in yghL, yvbT, and ykrP have 10–12

Figure 2. Map and DNA sequence of the primary and 15
secondary integration sites for ICEBs1. A. Approximate position of
the primary and 15 secondary ICEBs1 integration sites on the B. subtilis
chromosome. The circle represents the B. subtilis chromosome with the
origin of replication (oriC) indicated by the black rectangle at the top.

The slash marks represent the approximate location of the ICEBs1
insertion site. The name of the gene near which (ygxA) or into which (all
other locations) ICEBs1 inserted is indicated on the outside of the circle.
The arrows on the inside of the circle indicate the direction of ICEBs1
replication for each insertion. trnS-leu2 (in bold) contains the primary
ICEBs1 integration site attB. B. DNA sequence of the primary and 15
secondary integration sites. The gene name is indicated on the left,
followed by the DNA sequence (chromosomal target). The primary
attachment site (attB) is a 17 bp sequence with 5 bp inverted repeats
(underlined) separated by a 7 bp spacer. Mismatches from attB are
indicated in bold, capital letters. ‘‘mm’’ indicates the number of
mismatches from the primary 17 bp attB. ‘‘occurrences’’ indicates the
number of independent times an insertion in each site was identified.
Percentages of the total (27) are indicated in parenthesis. The * next to
yqhG indicates that two different ICEBs1 insertions were isolated in this
gene, once in each orientation. C. Sequence logo of the ICEBs1
secondary attachment sites. Using Weblogo 3.3 [21], we generated a
consensus motif of the 26 bases surrounding the insertion site of the 15
secondary insertion sites for ICEBs1. For comparison, the primary
attachment site for ICEBs1 is a 17 bp region with 5 bp inverted repeats
and a 7 bp spacer region in the middle [10]. The size of each nucleotide
corresponds to the frequency with which that nucleotide was observed
in that position in the secondary attachment sites.
doi:10.1371/journal.pgen.1003623.g002
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mismatches (out of 17 bp) from the sequence of attB (Figure 2B).

These results indicate that in the absence of the primary

integration site in trnS-leu2, ICEBs1 can integrate into many

different sites throughout the genome, albeit at a lower efficiency

[10]. Based on the diversity of the observed secondary attachment

sites and the number of sites identified only once, it is clear that we

have not identified all of the possible secondary integration sites for

ICEBs1.

Integration into the secondary site in ykrM in the
presence of a functional attB

We wondered if ICEBs1 could insert into a secondary site in

cells in which the primary site, attB, is intact. To test this, ICEBs1

(from donor strain KM250) was transferred by conjugation to an

ICEBs1-cured recipient that contained attB (strain KM524).

Transconjugants were selected on solid medium and ,108

independent transconjugants were pooled. DNA from the pooled

transconjugants was then used as a template for quantitative real-

time PCR (qPCR) with primers that detected ICEBs1 integrated

into yrkM (the most frequently used secondary site). We found that

the frequency of integration into yrkM was ,1024 to 1023 of that

into attB. As a control, we performed reconstruction experiments.

Known amounts of DNA from two strains, one containing an

insertion in yrkM (strain KM72), and the other containing an

insertion in attB (strain AG174) were mixed and used as a template

in qPCR, analogous to the experiment with DNA from the pooled

transconjugants. These reconstruction experiments validated the

results determined for the frequency of insertion into yrkM.

Excision of ICEBs1 from secondary integration sites is
reduced

We wished to determine if there were any deleterious

consequences of integration of ICEBs1 into secondary attachment

sites. We found that although ICEBs1 integrated into the secondary

integration sites, excision from all of the secondary sites we analyzed

was reduced or eliminated. We monitored excision from seven of

the secondary sites by overexpressing the activator of ICEBs1 gene

expression, RapI, from a regulated promoter (Pxyl-rapI) integrated

in single copy in the chromosome at the nonessential gene amyE

(Materials and Methods). Overproduction of RapI induces ICEBs1

gene expression [11,22] and typically results in excision of ICEBs1

from attB in .90% of cells within 1–2 hrs [10,15]. Following a

similar protocol as described for monitoring excision from attB

[11,15,22], we performed qPCR using genomic DNA as template

and primers designed to detect the empty secondary attachment site

that would form if the element excised. In a positive control,

excision of ICEBs1 from attB occurred in .90% of cells within two

hours after expression of the activator RapI (Figure 3A, wt). In a

negative control, excision of an ICEBs1 DattR mutant (Figure 1C),

integrated in attB, was undetectable (Figure 3A, DattR). Excision

from four of the sites tested, yrkM, mmsA, srfAA, and yycJ, was

reduced yet still detectable, ranging from 4% to 15% of that of

ICEBs1 from attB. Excision from the other three sites tested, yvbT,

spoVD, and ykrP, was undetectable (Figure 3A), similar to what we

observed for ICEBs1 DattR, the excision-defective control. In

general, the secondary integration sites that are most divergent from

attB had the least amount of excision (Table 1).

These findings indicate that integration of ICEBs1 into sites

other than attB causes a reduction, sometimes quite severe, in the

ability of the element to excise. Because excision is required for

transfer of a functional ICE, this reduced excision will limit the

spread of ICEBs1 that has inserted into secondary sites from which

it cannot escape.

Decreased conjugation of ICEBs1 from secondary sites
We measured the mating efficiencies of ICEBs1 following

excision from the four secondary attachment sites from which

excision was reduced but detectable. Excision of ICEBs1 is

required for transfer of the element to recipient cells. Thus, if the

ICEBs1 circle is stable, then the mating efficiencies should be

proportional to the excision frequency. The mating efficiencies of

ICEBs1 from yrkM and srfAA were ,2–5% of that of ICEBs1 from

attB. Likewise, the excision frequencies of ICEBs1 inserted in yrkM

and srfAA were ,5% of those of ICEBs1 in attB. These results

indicate that for ICEBs1 integrated in yrkM and srfAA, the mating

efficiencies were approximately what was expected from the

reduced excision frequencies.

In contrast, the mating efficiencies of ICEBs1 that excised from

mmsA or yycJ were reduced beyond what would be expected from

the already lowered excision frequency. In both cases, the excision

frequencies were ,15% of that of ICEBs1 integrated in attB.

However, the mating efficiencies were ,0.2% of that of ICEBs1

from attB, a 75-fold difference. Based on this result, we postulated

that the reduced mating efficiency relative to the excision

frequency was indicative of a reduction in the amount of circular

ICEBs1.

Reduced levels of circular ICEBs1 from secondary sites
that generate a heteroduplex

We measured the relative amounts of circular ICEBs1 after

excision from yrkM, srfAA, mmsA, and yycJ, the four insertions with

reduced but detectable excision, using qPCR primers designed to

detect only the circular form of ICEBs1. The relative amounts of

each circle were compared to the relative amount of the empty

secondary attachment site from which ICEBs1 excised. Measure-

ments were made two hours after induction of ICEBs1 gene

expression (overproduction of RapI).

As expected, the ratio of the amounts of the circular form to the

empty attachment site was about the same for insertions in yrkM

and srfAA as for an insertion in attB (Figure 3B). In contrast, the

ratio of the circle to the empty attachment site for mmsA and yycJ

was significantly less than that for wild type (Figure 3B).

Comparing the total amount of the ICEBs1 circle from mmsA

and yycJ to that from attB indicated that there was approximately

0.3% as much circle from each site as from attB. This decrease in

the amount of ICEBs1 circle is consistent with and likely the cause

of the drop in mating efficiency to approximately 0.2% of that of

ICEBs1 from attB.

The decrease in the amount of circular ICEBs1 from mmsA and

yycJ is likely due to the generation of a heteroduplex in the

attachment site on the circular ICEBs1. The ICEBs1 attachment

site contains a 17 bp sequence with a 7 bp spacer region between

5 bp inverted repeats. Integrase-mediated site-specific recombina-

tion occurs in the 7 bp spacer (the crossover region) [10]

(Figure 3C). If the 7 bp region in a chromosomal attachment site

is different from that in ICEBs1, as is the case for mmsA and yycJ,

then integration and host replication will create left (attL) and right

(attR) ends that have different crossover regions (Figure 3D). Upon

excision, these elements are predicted to contain a heteroduplex in

the attachment site on the excised circular ICEBs1. Of the four

insertions that have readily detectable excision frequencies, two

(mmsA and yycJ) are predicted to form a heteroduplex and two

(yrkM and srfAA) are not. In the case of mmsA::ICEBs1, the left and

right ends are known to have different sequences [10].

Together, our results indicate that excision of ICEBs1 from

secondary sites from which a heteroduplex is formed leads to lower

levels of the circular ICEBs1 heteroduplex and a reduction in the

ability of ICEBs1 to transfer to other cells. We do not yet know

Selective Pressures on Site-Specific ICEs
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Figure 3. Excision of ICEBs1 from secondary attachment sites.
A–B. Excision frequencies and relative amounts of the excision
products (circular ICEBs1 and empty chromosomal site) were deter-
mined as described in Materials and Methods. Cells were grown in
defined minimal medium with arabinose as carbon source. Products
from excision were determined two hours after addition of xylose to
induce expression of Pxyl-rapI to cause induction of ICEBs1 gene
expression. Primers for qPCR were unique to each attachment site.
Strains used include: wt, that is, ICEBs1 inserted in attB (CAL874); DattR,
ICEBs1 integrated in attB, but with the right attachment site deleted and
ICEBs1 unable to excise (Figure 1) (CAL872); mmsA::ICEBs1 (KM70);
yrkM::ICEBs1 (KM72); srfAA::ICEBs1 (KM141); yycJ::ICEBs1 (KM132); ykrP::I-
CEBs1 (KM77); spoVD::ICEBs1 (KM130); yvbT::ICEBs1 (KM94). Each strain
was assayed at least three times (biological replicates) and qPCR was
done in triplicate on each sample. Error bars represent standard
deviation. A. Frequency of excision of ICEBs1 from the indicated site of
integration. The relative amount of the empty chromosomal attach-
ment site was determined and normalized to the chromosomal gene
cotF. Data were also normalized to a strain with no ICEBs1 (JMA222),
which represents 100% excision. B. Relative amount of circular ICEBs1
compared to the amount of empty chromosomal attachment site for
the indicated insertions. The relative amount of the ICEBs1 circle,
normalized to cotF, was divided by the relative amount of the empty
attachment site, also normalized to cotF. These ratios were then
normalized to those for wild type. C. Cartoon of integration of ICEBs1
into its primary bacterial attachment site attB. attB is identical to the
attachment site on ICEBs1, attICEBs1. They consist of a 17 bp region
with 5 bp inverted repeats (gray boxes) on each side of a 7 bp spacer
region (white box). During integration and excision, a recombination
event occurs in the 7 bp spacer (crossover) region [38]. D. Cartoon of
integration of ICEBs1 into secondary integration sites. A secondary
integration site is indicated with a black box. When ICEBs1 integrates
into a secondary site, the crossover regions in attICEBs1 and that of the
secondary site are not necessarily identical, potentially creating a
mismatch. This mismatch, if not repaired, will be resolved by host
replication, generating left and right ends with different crossover
sequences. Excision would then create a circular ICEBs1 with a
heteroduplex in the attachment site on ICEBs1.
doi:10.1371/journal.pgen.1003623.g003

Table 1. Summary of properties of several ICEBs1 insertions
in secondary attachment sites.

Insertion site
(#mm)a Excision frequencyb Viabilityc dinC-lacZd

attB 1.0 1.0 1.0

yrkM (2) 0.06 0.030 34

mmsA (3) 0.15 0.14 6.1

srfAA (3) 0.04 0.10 8.7

yycJ (7) 0.12 0.073 N.D.

spoVD (8) ,1024 0.010 N.D.

ykrP (12) ,1024 0.040 4.1

yvbT (11) ,1024 0.0038 24

DattR ,1024 0.092 6.7

asite of insertion of ICEBs1; #mm indicates the number of mismatches between
the insertion site and attB (illustrated in Figure 2).
bexcision frequency measured as the empty attachment site 2 hrs after
induction of ICEBs1 gene expression; normalized to wt; same data as in Figure 3,
except that here data is normalized to wt (attB). Excision frequency from attB
was 1.
ccell viability normalized to ICEBs1 at attB; same data as in Figure 4. Viability of
ICEBs1 at attB was 0.9 of uninduced.
dexpression of damage inducible gene dinC-lacZ, normalized to that of cells
with ICEBs1 in attB; data from Figure 6. ß-galactosidase specific activity of
ICEBs1 at attB was 0.3.
doi:10.1371/journal.pgen.1003623.t001
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what causes the lower amounts of the ICEBs1 heteroduplex. Loss

of the DNA mismatch repair gene mutS did not alter the instability

of the ICEBs1 heteroduplex (unpublished results), indicating that

mismatch repair is not solely responsible for this effect. Nonethe-

less, the overall reduction in transfer is due to both decreased

excision and further decreased amounts of the excised element.

Both of these defects provide barriers to the spread of ICEBs1

from secondary attachment sites.

ICEBs1 returns to attB following excision and conjugation
from secondary sites

We found that when ICEBs1 excises from a secondary site and

transfers to wild type cells via conjugation it tends to integrate in

the primary attachment site, attB, and not in a secondary site.

Donors with ICEBs1 in yrkM, mmsA, yycJ, and srfAA were crossed

with a recipient (strain KM110) containing attB (and all known

secondary sites). Individual transconjugants from each cross were

isolated and tested by PCR for the presence of ICEBs1 in attB.

ICEBs1 was present in attB in 9 of 10 transconjugants from

yrkM::ICEBs1 donors, 9 of 9 transconjugants from mmsA::ICEBs1

donors, 9 of 10 transconjugants from yycJ::ICEBs1 donors, and

10 of 10 transconjugants from srfAA::ICEBs1 donors. In the two

cases where ICEBs1 was not in attB, it was not present in the

secondary site from which it came. We confirmed, using PCR

primers internal to ICEBs1, that ICEBs1 was present in the

transconjugants. Thus, we conclude that even if ICEBs1 is able to

excise from a secondary attachment site, there is a strong bias in

returning to the primary site if that site is present in a

transconjugant.

We also found that if attB is not present in recipients during

conjugation, then ICEBs1 integrates into a secondary attachment

site, but with no apparent bias for the site from which it originated.

We crossed donors with ICEBs1 in yrkM, mmsA, and srfAA with a

recipient missing attB (strain KM111), and tested individual

transconjugants for integration into the cognate site from which

ICEBs1 excised in the donor. With the yrkM::ICEBs1 donor, 1 of 6

transconjugants had ICEBs1 in yrkM. With the mmsA::ICEBs1

donor, none of the 10 transconjugants tested had ICEBs1

integrated in mmsA. With the srfAA::ICEBs1 donor, none of the

four transconjugants tested had ICEBs1 in srfAA. Together, these

results indicate that ICEBs1 has a strong preference to integrate

into attB, even when it starts from a secondary site, and that if attB

is not available, ICEBs1 tends to go to a secondary site, with no

apparent preference for the original location.

Decreased proliferation and viability of strains in which
ICEBs1 has decreased excision

We found that strains with ICEBs1 in secondary integration

sites had a decreased ability to form colonies when ICEBs1 gene

expression was induced. We measured colony forming units

(CFUs) of several strains with excision-defective (meaning reduced

or no detectable excision) ICEBs1 insertions, including ICEBs1 in

secondary sites and ICEBs1 DattR (in attB), both with and without

induction of ICEBs1 gene expression. We also measured CFUs of

wild type ICEBs1 (with normal excision frequencies) integrated at

attB under similar conditions (Figure 4A). In the absence of RapI

expression, when most ICEBs1 genes are repressed, growth and

viability of excision-defective strains were indistinguishable from

that of excision-competent strains. In contrast, by three hours after

induction of ICEBs1 gene expression in excision-defective ICEBs1

strains (DattR with ICEBs1 in attB, or insertions in mmsA, yrkM,

srfAA, yycJ, spoVD, yvbT, and ykrP), the number of CFUs was

reduced compared to that of the excision-competent ICEBs1 (in

attB) (Figure 4A). These results are consistent with previous

observations that excision-defective int and xis null mutants have a

viability defect when RapI is overproduced [10].

Induction of ICEBs1 in several of the secondary integration sites

(insertions in mmsA, srfAA, yycJ and ICEBs1 DattR in attB) caused a

drop in CFU/ml to ,10% of that of strains without ICEBs1

induction or the strain with wild type ICEBs1 at attB (Figure 4A).

Induction of ICEBs1 in other insertion sites (ykrP, yrkM, spoVD,

yvbT) caused a more severe drop in viability. The differences in

CFU/ml between induced and uninduced cells (three hours after

induction) appeared to be the combined effects of both a defect in

proliferation (cell division) and cell death (viability). At times

$3 hrs after induction of ICEBs1 gene expression, the number of

CFU/ml dropped to below that before induction of gene

expression, indicating that preexisting cells lost viability. For

simplicity, we use ‘‘viability’’ to refer to both cell death and the

decreased proliferation.

The drop in viability after induction of ICEBs1 in the various

insertions did not correlate with dissimilarity of the attachment

sites to attB or to the amount of residual excision in the excision-

defective strains. For example, the ICEBs1 DattR mutant is

completely unable to excise, and viability is ,10% three hours

after induction of ICEBs1 gene expression. In contrast, ICEBs1

inserted into yrkM has about 5% excision after induction of

ICEBs1 gene expression and viability is ,3% (Table 1). Together,

these results indicate that something about the specific locations of

the insertions is likely causing the more extreme viability defect

observed in some of the excision-defective ICEBs1 strains.

One of the most extreme effects on viability after induction of

ICEBs1 gene expression is from the insertion in yvbT. Within three

hours after induction of ICEBs1 gene expression in the

yvbT::ICEBs1 strain, viability was ,0.3% of that of strains without

ICEBs1 induction or of the strain with excision-competent ICEBs1

(Figure 4A). yvbT gene product is predicted to be similar to alkanal

monooxygenases (luciferases). Insertion of ICEBs1 in yvbT likely

knocks out yvbT function, so it seemed possible that the loss of yvbT

combined with induction of ICEBs1 gene expression was causing

the severe drop in viability. To test this hypothesis, we deleted yvbT

in cells containing ICEBs1 inserted into mmsA and tested for

viability after induction of ICEBs1 gene expression. There was no

additional drop in viability of the mmsA::ICEBs1 yvbT null mutant

compared to the mmsA::ICEBs1 secondary site alone (wild type

yvbT), either with or without induction of ICEBs1 gene expression.

Based on these results, we conclude that the severe defect in

viability of the yvbT::ICEBs1 secondary site mutant was not due to

the loss of yvbT function combined with induction of ICEBs1 gene

expression. It is also possible the severe drop in viability was due to

production of a fragment of the yvbT gene product. This possibility

seems highly unlikely because the putative fragment alone does not

cause a phenotype, rather the drop in viability requires both

induction and replication (see below) of ICEBs1. In addition, other

insertions also caused a severe drop in viability and it is highly

unlikely that each one of these is producing a toxic protein

fragment.

We do not know what causes the more severe drop in viability

in some insertions. However, the decrease in cell proliferation and

viability caused by expression of ICEBs1 in secondary attachment

sites should provide selective pressure against the long term

survival of these strains. The more severe the loss in viability, the

stronger the selective pressure against long term survival of strains

with insertions in these sites. Suppressor mutations that alleviate

the drop in viability are readily obtained (KLM, C. Lee, ADG,

data not shown), although most of these mutations have not been

characterized.

Selective Pressures on Site-Specific ICEs
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ICEBs1 replication functions are required for the drop in
viability of excision-defective insertions

Because the drop in proliferation and viability in the first few

hours after induction of ICEBs1 gene expression occurs in ICEBs1

excision-defective and not in excision-competent strains, the

decreased viability is likely due to a cis-acting property of ICEBs1

and not a diffusible ICEBs1 product. One of the more dramatic

changes following induction of ICEBs1 gene expression is

induction of multiple rounds of unidirectional rolling circle

replication [15]. This replication initiates from the ICEBs1 origin

of transfer oriT, requires the ICEBs1 relaxase encoded by nicK and

the helicase processivity factor encoded by helP (previously ydcP)

[19]. Rolling circle replication of ICEBs1 occurs even when

ICEBs1 is unable to excise from the chromosome as observed

previously for a mutant unable to excise [15]. Therefore, we

expected that induction of ICEBs1 gene expression in the

secondary site insertions would lead to unidirectional rolling circle

replication from oriT in the host chromosome (Figure 5). It seemed

Figure 4. Effects of induction of ICEBs1 gene expression on cell
viability. The effects of induction of ICEBs1 gene expression on cell
viability are shown for the indicated insertions and their derivatives.
Cells were grown in defined minimal medium with arabinose to early
exponential phase (OD600,0.05) and xylose was added to induce
expression of Pxyl-rapI, causing induction of ICEBs1 gene expression.
The number of colony forming units was measured three hours after
induction and compared to cells grown in the absence of xylose
(uninduced). All experiments were done at least three times, except for
the helP mutants (panel C), which were done twice with similar results.
Data presented are averages of the replicates. Error bars represent the
standard deviation of at least three replicates. A. Drop in viability of
strains in which excision of ICEBs1 is defective. Strains used include: wt,
that is, attB::ICEBs1 (CAL874); attB::ICEBs1 DattR::tet (CAL872); mmsA::I-
CEBs1 (KM70); srfAA::ICEBs1 (KM141); yycJ::ICEBs1 (KM132); ykrP::ICEBs1
(KM77); yrkM::ICEBs1 (KM72); spoVD::ICEBs1 (KM130); yvbT::ICEBs1
(KM94). B. Data are shown for two secondary insertion sites
(mmsA::ICEBs1 and yvbT::ICEBs1). Similar results were obtained with
ykrP::ICEBs1 and srfAA::ICEBs1 (data not shown). Derivatives of each
insertion that delete nicK and all downstream ICEBs1 genes (DnicK-
yddM) or that leave nicK intact and delete just the downstream genes
(DydcS-yddM) (Figure 1) were tested. Strains used include: mmsA::ICEBs1
(KM70); mmsA::{ICEBs1 D(nicK-yddM)::cat} (KM366); mmsA::{ICEBs1
D(ydcS-yddM)::cat} (KM358); yvbT::ICEBs1 (KM94); yvbT::{ICEBs1 D(nicK-
yddM)::cat} (KM369); yvbT::{ICEBs1 D(ydcS-yddM)::cat} (KM362). Data for
KM70 and KM94 are the same as those shown above in panel A and are
shown here for comparison. C. The ICEBs1 helicase processivity protein
encoded by helP is required for cell killing by ICEBs1. Data are shown for

two secondary integration sites (ykrP and yvbT) and the excision
defective ICEBs1 DattR. The helP allele is a non-polar deletion [19].
Strains used include: attB::(ICEBs1 DattR::tet) (CAL872); attB::(ICEBs1
DhelP DattR::tet) (KM437); ykrP::ICEBs1 (KM77); ykrP::(ICEBs1 DhelP)
(KM429); yvbT::ICEBs1 (KM94); yvbT::(ICEBs1 DhelP) (KM459). Data for
KM94, KM77, and CAL872 are the same as those shown above in panel
A and are shown here for comparison.
doi:10.1371/journal.pgen.1003623.g004

Figure 5. Cartoon of repeated rolling-circle replication from
the ICEBs1 oriT that is stuck in the chromosome. Rolling circle
replication is induced in ICEBs1 insertions that are unable to excise from
the chromosome. During this replication, the ICEBs1 relaxase NicK
(black circles) nicks a site in oriT, the origin of transfer (gray bar) that
also functions as an origin of replication [15,23]. NicK presumably
becomes covalently attached to the 59 end of the nicked DNA.
Replication extends (dotted line with arrow) from the free 39-end, and
regenerates a functional oriT that is a substrate for another molecule of
NicK. The only other ICEBs1 product needed for ICEBs1 replication is the
helicase processivity factor HelP [19]. The rest of the replication
machinery (not shown) is composed of host-encoded proteins.
doi:10.1371/journal.pgen.1003623.g005
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likely that this replication could cause damage to the chromosome

and lead to the decrease in cell viability.

We tested nicK and the genes downstream for effects on cell

viability following induction of ICEBs1 gene expression in the

excision-defective insertions. Preliminary experiments indicated

that loss of nicK restored viability after induction of ICEBs1 gene

expression. However, this effect could have been due to polarity on

downstream genes. Unfortunately, nicK null mutants are difficult to

fully complement [23], perhaps because NicK might act prefer-

entially in cis. In addition, complementation of other supposedly

‘‘non-polar’’ mutations in ICEBs1 are not complemented fully

[19,24]. Therefore, to test if loss of nicK was responsible for the

suppression of lethality, or if the suppression was due to loss of

expression of a downstream gene, we compared two different

deletions in ICEBs1. One deletion removed nicK and most of the

downstream genes {D(nicK-yddM)} (Figure 1D). In the second

deletion, nicK was intact, but most of the genes downstream from

oriT and nicK were removed {D(ydcS-yddM)} (Figure 1E).

We found that deletion of nicK alleviated the growth defect of

excision-defective secondary insertions, including mmsA::ICEBs1

and yvbT::ICEBs1 that caused the most severe drop in viability

(Figure 4B). Deletion of the genes downstream from nicK did not

alleviate the drop in viability (Figure 4B), indicating that

expression of these genes (many encoding conjugation functions)

was not the cause of the decreased cell viability. In addition, in

preliminary experiments, we found that several suppressor

mutations that restore viability to an excision-defective ICEBs1

(in this case, at attB) were null mutations in nicK (C. Lee, ADG,

unpublished results). Together, these results indicate that a NicK-

dependent process is causing the drop in viability of the excision-

defective ICEBs1.

NicK creates a nick at a specific site in ICEBs1 oriT [23], and

nicking is required for ICEBs1 replication (and conjugation) [15].

To determine if the drop in cell viability was due to nicking per se,

or to replication, we used a recently defined ICEBs1 gene, helP,

which encodes a helicase processivity factor that is needed for

ICEBs1 replication but not for nicking [19,23]. Deletion of helP

(Figure 1F) is not polar on nicK and does not affect nicking at oriT

[19]. Deletion of helP completely alleviated the growth defect

associated with induction of ICEBs1 (Figure 4C).

Based on these results, we conclude that unidirectional rolling

circle replication from oriT in the chromosome most likely caused

the drop in viability of the excision-defective ICEBs1. The

decrease in viability could be due to breaks and degradation of

chromosomal DNA around the site of insertion and/or disruptions

in host chromosomal replication caused by the multiple rounds of

rolling circle replication from oriT (Figure 5).

Induction of the SOS response in strains in which ICEBs1
is defective in excision

We found that induction of ICEBs1 gene expression in the

excision-defective insertions caused induction of the host SOS

response. Like that in other organisms, the SOS response in B.

subtilis results in increased expression of a large set of genes in

response to DNA damage or replication stress [25]. We used a lacZ

fusion to a damage-inducible gene, dinC-lacZ [26,27], to monitor

the SOS response in cells following induction of ICEBs1. Without

induction of ICEBs1 gene expression, there was no detectable ß-

galactosidase activity above background levels, indicating that

none of the insertions alone caused elevated SOS gene expression.

In all of the excision-defective ICEBs1 strains analyzed (ICEBs1

DattR in attB, and insertions in mmsA, yvbT, ykrP, srfAA, and yrkM),

there was a $3.5-fold increase in ß-galactosidase levels from the

dinC-lacZ fusion 3 hrs after induction of ICEBs1 gene expression

(Figure 6). In contrast, there was no detectable increase in ß-

galactosidase activity three hrs after induction of ICEBs1 gene

expression in the excision-competent insertion in attB (Figure 6).

There was no apparent correlation between the amount of SOS

induction and the severity of the viability defect. For example, one

of the strains with the most severe viability defect (ICEBs1 in ydcP)

had a relatively low amount of expression of dinC-lacZ (Figure 6).

However, the amount of SOS induction could be an underesti-

mate since many cells in the population lose viability.

Induction of dinC-lacZ in the strains with ICEBs1 in secondary

attachment sites was consistent with prior preliminary experiments

using DNA microarrays that indicated induction of the SOS

response in ICEBs1 int and xis mutants that are incapable of

excision (N. Kavanaugh, C. Lee, ADG, unpublished results).

Based on these results, we conclude that induction of ICEBs1 gene

expression in cells in which ICEBs1 is stuck in the chromosome

causes DNA damage that induces the host SOS response.

However, the SOS response per se is not what caused cell death.

Discussion

We isolated and characterized insertions of the integrative and

conjugative element ICEBs1 of B. subtilis into secondary integra-

tion (attachment or insertion) sites. Secondary integration sites

appear to be used naturally, even in the presence of the primary

site, at a frequency of ,1024 to 1023 of that of the primary site,

indicating that approximately 100–1,000 cells in a population of

,106 transconjugants will have ICEBs1 at a secondary site. We

found that insertions in secondary sites are detrimental for the

propagation of ICEBs1 and detrimental to the survival of the host

cells. These detrimental effects likely provide selective pressure to

maintain the already established site-specificity. Below we discuss

target site selection among ICEs, aspects of ICEBs1 biology that

make insertions into secondary sites detrimental, and the more

general implications for the evolution of ICEs.

Figure 6. Induction of the SOS response. The ß-galactosidase
specific activities from the SOS transcriptional reporter fusion dinC-lacZ
in strains with ICEBs1 in the indicated secondary attachment sites are
presented. Strains were grown as described in Figure 4 and samples for
ß-galactosidase assays were taken 3 hours after induction of ICEBs1
gene expression. Data presented are the averages of two biological
replicates (four for DattR strain KM392)). For all of the strains with
insertions in secondary attachment sites, the values from the biological
replicates were within 20% of the average. Strains used include: wt,
attB::ICEBs1 (KM390); ykrP::ICEBs1 (KM402); mmsA::ICEBs1 (KM394);
attB::ICEBs1 DattR::tet (KM392); srfAA::ICEBs1 (KM400); yvbT::ICEBs1
(KM396); yrkM::ICEBs1 (KM404).
doi:10.1371/journal.pgen.1003623.g006
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Target site selection and maintenance of tRNA genes as
integration sites

We have identified 15 different secondary insertion sites for

ICEBs1. Some of these sites are similar to the primary attachment

site, but some are quite different. Based on the diversity of sites,

and the isolation of only a single insertion in many of them, it is

likely that we are nowhere near saturation for identifying all

possible sites in non-essential regions. Given that there is some

sequence conservation among the secondary sites, DNA sequence

is clearly important in the potential function as an integration site.

However, we suspect that other factors also contribute. These

factors could include possible roles for nucleoid binding proteins,

other DNA binding proteins, transcription, and local supercoiling.

Many site-specific ICEs have preferred integration sites in

tRNA genes. This preference is thought to occur, at least in part,

because tRNA genes are highly conserved and contain inverted

repeats that are typically used as integration targets for site-specific

recombinases [9]. We postulate that the selective pressure to

maintain site-specific integration in a tRNA gene comes from a

combination of factors, including: the conservation of tRNAs, the

ability of an ICE to efficiently excise from the primary attachment

site, and the decreased cell viability and decreased ability of an

ICE to spread when excision is reduced due to integration into a

secondary site.

Selective pressures against ICEs in secondary attachment
sites

Our results indicate that there are at least two main types of

selective pressures against propagation of ICEBs1 that has inserted

into a secondary integration site. First, there is strong pressure

against the spread of that particular element due to the large defect

in its ability to excise and the instability of circular ICEBs1 when it

forms a heteroduplex. The excised circular form of an ICE is

necessary for its complete transfer to a recipient cell. At least one

other ICE has a reduced excision frequency from a secondary

integration site. Excision of SXT from a secondary attachment site

in Vibrio cholerae was reduced 3–4-fold relative to its ability to excise

from the primary attachment site [28]. In addition, lysogenic

phages can also have reduced excision efficiencies from secondary

attachment sites [29]. Insertion of any type of mobile genetic

element into a location from which it has trouble getting out will

be deleterious to the further horizontal propagation of that

element. Based on our results, this is particularly true for ICEBs1.

In addition to the defect in ICEBs1 excision and transfer from

secondary integration sites, there is a decrease in cell viability

following induction of ICEBs1 gene expression. ICEBs1 gene

expression is normally induced under conditions of starvation or

cell crowding when the activator RapI is expressed and active, or

when the RecA-dependent SOS response is induced [22].

Induction of ICEBs1 gene expression causes rolling circle

replication from the ICEBs1 origin of transfer oriT [15,19]. Our

results indicate that rolling circle replication from an element that

is unable to efficiently excise from the chromosome causes a drop

in cell viability. This drop is likely due to chromosomal damage

and stalling of the chromosomal replication forks when they reach

the complex structure formed by repeated initiation of rolling

circle replication from oriT in the chromosome (Figure 5).

We suspect that autonomous replication is a common property

of many ICEs but has not been generally observed because of the

low frequency of induction and excision of most of these elements.

There are indications that some other ICEs undergo autonomous

replication [1,16–18]. If autonomous replication of ICEs is

widespread, as we postulate [15,19], then there should be selective

pressure against viability of cells in which an ICE is induced,

replicates, and is unable to excise.

There were at least two different effects caused by replication of

excision-defective elements. Replication from ICEBs1 in the

chromosome caused a drop in cell viability of at least 10-fold,

but sometimes caused a severe drop, 100–1000-fold in about 3 hrs.

We do not know what causes this severe drop in viability, but it

requires active replication of the ICEBs1 that is unable to excise

from a specific chromosomal location. This severe drop in viability

could be due to increased dosage of nearby genes or perhaps

differential fragility of these chromosomal regions. In any case, the

severe drop in viability provides even stronger selective pressure

against propagation of the strains with insertions of ICEBs1 in

these locations.

The growth defect associated with the secondary insertions is

most obvious when ICEBs1 gene expression is induced. Cells with

ICEBs1 insertions in secondary attachment sites might be purged

from the population under natural conditions of induction,

providing selective pressure against maintenance of integrants in

secondary sites and favoring a site-specific strategy of integration

and excision.

We estimated the effects of insertions in secondary sites in

populations without experimentally induced activation of ICEBs1.

The ‘‘spontaneous’’ activation and excision frequency of ICEBs1

in a population of cells is estimated to be approximately one cell in

104–105 [10,22,30]. Assuming a frequency of activation of ICEBs1

of ,1024 per generation, and that all activated cells with ICEBs1

in a secondary site die, we estimate that it would take ,23,000

generations for a population of cells with ICEBs1 in a secondary

site to be 0.1 times the size of a population of cells with ICEBs1 in

the primary site. The activation frequency increases under several

conditions likely to be more relevant than growth in the lab,

including: the presence of cells without ICEBs1, entry into

stationary phase, and during the SOS response [10,11,22]. For

example, if activation of ICEBs1 actually occurs in 0.1% of cells,

then it would take ,2,300 generations for the secondary site

insertion population to be 0.1 times the population of cells with

ICEBs1 in the primary site. These effects are difficult to measure

experimentally, but easy to see when ICEBs1 is efficiently induced.

ICEs with single versus multiple integration sites
ICEs of the Tn916/Tn1545 family can integrate into multiple

sites in many organisms, yet they are not known to cause a defect

in cell growth when gene expression is induced. Tn916 and most

family members contain tetM, a gene encoding resistance to

tetracycline. Expression of tetM and Tn916 genes is induced in the

presence of tetracycline [31]. Tn916 has two helP (helicase

processivity) homologues and we predict that it undergoes

autonomous rolling circle replication [19]. Despite relatively low

excision frequencies, tetracycline-induced Tn916 gene expression

is not known to cause a drop in cell viability. Tetracycline induces

expression of several Tn916 genes, including those needed for

excision. However, the Tn916 relaxase (orf20), the two helP

homologues (orf22 and orf23), and the conjugation genes are not

expressed until Tn916 excises and circularizes [31]. Based on

analogy to ICEBs1, we have postulated that Tn916 is capable of

autonomous rolling circle replication [15] and that the relaxase

(orf20) and at least one of the helP homologues are likely needed for

this replication [19]. The regulation of Tn916 gene expression

specifically prevents expression of these putative replication

functions until after excision. Consequently, rolling circle replica-

tion of Tn916 cannot occur while the element is integrated in the

chromosome. We speculate that some of the evolutionary

pressures to establish and maintain a high degree of site specificity
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is lost when expression of ICE replication functions does not occur

until after excision from the host genome.

Materials and Methods

Media and growth conditions
Bacillus subtilis was grown at 37uC in LB or defined S750 minimal

medium with arabinose (1%) as carbon source. Antibiotics and

other chemicals were used at the following concentrations:

isopropyl b-D-1-thiogalactopyranoside (IPTG) (1 mM), chloram-

phenicol (cat, 5 mg/ml), kanamycin (kan, 5 mg/ml), spectinomycin

(spc, 100 mg/ml), erythromycin (0.5 mg/ml) and lincomycin

(12.5 mg/ml) together, to select for macrolide-lincosamide-strep-

togramin B resistance (mls or erm).

Bacillus subtilis strains and alleles
B. subtilis strains used are listed in Table 2. All except BTS14 are

derived from AG174 (JH642) and contain mutations in trpC and

pheA (not shown). Most of the strains were constructed using

natural transformation or conjugation, as described below. Many

alleles were previously described. dinC18::Tn917lac is an insertion

in the damage-inducible gene dinC and creates a transcriptional

fusion to lacZ [27]. Most ICEBs1 strains contained a kanamycin-

resistance cassette {D(rapI-phrI)342::kan} [11]. ICEBs1 was induced

by overexpression of rapI from a xylose-inducible promoter using

amyE::{(Pxyl-rapI), spc} [24] or from an IPTG-inducible promoter

using amyE::{(Pspank(hy)-rapI), spc} [11]. DattR100::tet deletes

216 bp spanning the junction between the right end of ICEBs1

and the chromosome [10]. DhelP155 is an unmarked 413-bp

deletion that removes the entire coding sequence and the 35 bp

helP-ydcQ intergenic region (Figure 1F) [19].

DattB mutant with a compensatory mutation in trnS-

leu1. DattB::cat is a deletion-insertion that is missing ICEBs1 and

removes 185 bp that normally contains the primary chromosomal

ICEBs1 attachment site, resulting in the loss of a functional trnS-

leu2 [10]. Although trnS-leu2 is non-essential [10,32], cells with

DattB do not grow as well as wild type. To improve the growth of

DattB::cat, we used a compensatory mutation in trnS-leu1 that

changes the anti-codon to that normally found in trnS-leu2 (C. Lee,

& ADG), analogous to the leuF1 mutation previously described

[32]. The compensatory mutation was constructed by site-directed

mutagenesis using the overlap-extension PCR method [33].

Because trnS-leu1 and DattB::cat are genetically linked, we selected

for chloramphenicol resistant colonies and screened for the single

bp mutation in trnS-leu1 by sequencing. In addition to the mutant

trnS-leu1 allele (trnS-leu1-522), the strain had an additional

mutation, (59-CAAAAAAACTAAA to 59-CAAAAAAACTAAG)

in the non-coding region between DattB::cat and yddN. Growth of

the resulting strain, CAL522, was indistinguishable from that of

wild type. This strain stably acquired ICEBs1 in conjugation

experiments at a frequency ,0.5% of that of wild type,

approximately 10-fold lower than the strain without the compen-

satory mutation in trnS-leu1 [10]. We do not understand the cause

of this reproducible difference.

Deletion of nicK and downstream genes. We constructed

two large deletion-insertion mutations in ICEBs1, one removing

nicK and all downstream genes, D(nicK-yddM)::cat, and the other

leaving nicK intact, but removing the downstream genes, D(ydcS-

yddM)::cat. Both deletions leave the ends of ICEBs1 intact

(Figure 1D, E), have cat (chloramphenicol resistance) from

pGEMcat [34], and were constructed using long-flanking

homology PCR [35]. The D(nicK-yddM)::cat allele contains the

first 127 bp in the 59 end of nicK. The D(ydcS-yddM)::cat allele

contains the first 29 bp in the 59 end of ydcS. Both deletions

(Figure 1) extend through the first 170 bp in yddM. The alleles

were first transformed into wild type strain AG174. Chromo-

somal DNA was then used to transfer the alleles into other strains,

including KM70 (mmsA::ICEBs1), KM94 (yvbT::ICEBs1), KM77

(ykrP::ICEBs1), KM141 (srfAA::ICEBs1), and CAL874 (ICEBs1 at

attB). In all cases, the incoming deletion associated with cat

replaced the D(rapI-phrI)342::kan allele present in ICEBs1 in the

recipient.

Deletion of yvbT in mmsA::ICEBs1. We constructed a

deletion-insertion that removes the 19 bases before yvbT and the

first 808 bp of yvbT, leaving the last 200 bp intact. The sequence

from yvbT was replaced with cat, from pGEMcat [34], using long-

flanking homology PCR [35]. The insertion-deletion was verified

by PCR and the mutation was introduced into strain KM70

(mmsA::ICEBs1) by transformation.

Isolation and identification of secondary ICEBs1
integration sites

Mating ICEBs1 into a DattB recipient. Mating assays were

performed essentially as described [10,11]. Excision of a kanamy-

cin resistant ICEBs1 (ICEBs1 D(rapI-phrI)342::kan) was induced in

the donor cells by overproduction of RapI from Pspank(hy)-rapI.

Donors (resistant to kanamycin and spectinomycin) were mixed

with an approximately equal number of recipients (resistant to

chloramphenicol) and filtered on sterile cellulose nitrate mem-

brane filters (0.2 mm pore size). Filters were cut into 8 pieces (so

that transconjugants were independent isolates), placed on Petri

plates containing LB and 1.5% agar, and incubated at 37uC for

3 hours. Cells from each piece of filter were streaked for

independent transconjugants by selecting for the antibiotic

resistance conferred by the incoming ICEBs1 (kanamycin) and

the resistance unique to the recipient (chloramphenicol). The

recipient used in this report {DattB::cat trnS-leu1-522} is different

from the recipient {DattB::cat} used previously [10]. The trnS-leu1-

522 confers normal growth to the DattB (DtrnS-leu2) mutant (see

above).

Inverse PCR to identify the site of insertion of

independent transonjugants. Identification of integration

sites was done essentially as described previously [10]. Briefly,

we used inverse PCR to amplify the junction between the

chromosome and the right (yddM) end of ICEBs1 integrated into

various secondary sites. Chromosomal DNA was digested with

HindIII and approximately 50 ng was ligated in a 100 ml reaction

to favor circularization of DNA fragments. One-fourth of the

ligation reaction was used in inverse PCR with either of two

primer pairs (CLO17-CLO58 or CLO50-oJMA97) designed to

amplify the ICEBs1 and chromosomal sequences flanking yddM.

PCR products were sequenced with primers CLO17, CLO50,

oJMA207, and CLO114 (primers are described in Table 3).

Comparison to the B. subtilis genome sequence indicated where

ICEBs1 had integrated.

Backcross of ICEBs1 insertions. Seven of the 15 different

insertions of ICEBs1 in secondary attachment sites were initially

chosen for further study. These were first backcrossed into a strain

cured of ICEBs1 (JMA222). Pxyl-rapI (amyE::{(Pxyl-rap) spc}) was

introduced into these strains by transformation and selection for

spectinomycin resistance using chromosomal DNA from strain

MMB869. We verified that ICEBs1 was still at the original

secondary attachment site using PCR with site-specific primers.

The final strains from these crosses include: KM70 (mmsA::I-

CEBs1), KM94 (yvbT::ICEBs1), KM72 (yrkM::ICEBs1), KM77

(ykrP::ICEBs1), KM130 (spoVD::ICEBs1), KM141 (srfAA::ICEBs1),

and KM132 (yycJ::ICEBs1).
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Table 2. B. subtilis strains used.

Strain relevant genotype (comment and/or reference)

AG174 phe trp [39]

AG1624 zbj-82::Tn917 (insertion at 65u) [40]

BTS13 PY79 (trp+ phe+) DmutSL::spc [41]

CAL522 trnS-leu1-522 DattB::cat

CAL572 yomR572::(ICEBs1 D(rapI-phrI)342::kan) DattB::cat comK::cat::spc [10]

CAL575 yvbT575::(ICEBs1 D(rapI-phrI)342::kan) DattB::cat comK::cat::spc [10]

CAL576 yqhG576::(ICEBs1 D(rapI-phrI)342::kan) DattB::cat comK::cat::spc [10]

CAL577 yobJ577::(ICEBs1 D(rapI-phrI)342::kan) DattB::cat comK::cat::spc [10]

CAL578 Intergenic ygxA rrnD-16S-578::(ICEBs1 D(rapI-phrI)342::kan) DattB::cat comK::cat::spc [10]

CAL872 DattR100::tet D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc}

CAL874 D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc} [15]

JMA168 D(rapI-phrI)342::kan amyE::{(Pspank(hy)-rapI) spc} [23]

J3 srfAA3::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J4 yycJ4::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J9 yrkM9::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J11 yqhG11::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J12 yisQ12::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J14 mmsA14::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

J16 ykrP16::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

JMA222 ICEBs10/cured of ICEBs1 [11]

KI1254 dinC18::Tn917lac; allele originally from YB5018 [27]

KM5 yghL5::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

KM8 spoVD8::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

KM10 ydbJ10::(ICEBs1 D(rapI-phrI)342::kan) trnS-leu1-522 DattB::cat

KM70 mmsA15::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM72 yrkM9(J9)::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM77 ykrP16::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM94 yvbT575::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM110 ICEBs10 zbj-82::Tn917 (insertion at 65u)

KM111 ICEBs10 zbj-82::Tn917 trnS-leu1-522 DattB::cat

KM130 spoVD8::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM132 yycJ4::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM141 srfAA3::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM250 ICEBs1 D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) cat}

KM252 mmsA15::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) cat}

KM268 mmsA15::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) cat} DmutSL::spc

KM304 mmsA15::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} DyvbT::cat

KM358 mmsA15::(ICEBs1 D(ydcS-yddM)356::cat) amyE::{(Pxyl-rapI) spc}

KM362 yvbT575::(ICEBs1 D(ydcS-yddM)356::cat) amyE::{(Pxyl-rapI) spc}

KM366 mmsA15::(ICEBs1 D(nicK-yddM)354::cat) amyE::{(Pxyl-rapI) spc}

KM369 yvbT575::(ICEBs1 D(nicK-yddM)354::cat) amyE::{(Pxyl-rapI) spc}

KM384 srfAA3::(ICEBs1 D(ydcS-yddM)356::cat) amyE::{(Pxyl-rapI) spc}

KM386 srfAA3::(ICEBs1 D(nicK-yddM)354::cat) amyE::{(Pxyl-rapI) spc}

KM388 ykrP16::(ICEBs1 D(ydcS-yddM)356::cat) amyE::{(Pxyl-rapI) spc}

KM389 ykrP16::(ICEBs1 D(nicK-yddM)354::cat) amyE::{(Pxyl-rapI) spc}

KM390 D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc} dinC18::Tn917(lacZ mls)

KM392 DattR100::tet D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac

KM394 mmsA15::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac

KM396 yvbT575::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac
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Assays for excision and integration of ICEBs1
Detecting excision from secondary insertions. Excision

of ICEBs1 from a chromosomal attachment site creates an

extrachromosomal ICEBs1 circle and an ‘‘empty’’ attachment site

(also called ‘‘repaired chromosomal junction’’). Each product was

measured using specific primers for quantitative real time PCR

(qPCR), using a LightCycler 480 Real-Time PCR system with

Syber Green detection reagents (Roche), essentially as described

[15]. Cells were grown in defined minimal medium with arabinose

as carbon source. Products from excision were determined two

hours after addition of xylose to induce expression of Pxyl-rapI to

cause induction of ICEBs1 gene expression.

The amount of each empty attachment site was compared to a

chromosomal reference gene, cotF, measured with primers

CLO257-CLO258. The amount of empty attachment site from

each of the secondary sites was normalized to strain JMA222, an

ICEBs1-cured strain that simulates 100% excision. Standard

curves for qPCR with cotF and the repaired junction for each

secondary insertion were generated using genomic DNA from

JMA222. Primers (in parentheses) for empty secondary attachment

sites were specific for: yrkM (CLO117-ABO17), mmsA (CLO109-

ABO18), yycJ (KM18-KM19), srfAA (KM22-KM23), spoVD

(KM20-KM21), yvbT (ABO14-ABO15), ykrP (KM154-KM16),

and attB (CLO261-CLO262).

The amount of ICEBs1 circle that forms after excision from the

chromosome was measured with primers AB019-CLO114. The

amount of excised circle was compared to the chromosomal

reference cotF (primers CLO257-CLO258), and normalized to the

amount of excised circle from attB (strain CAL874). Standard

curves for qPCR for cotF and the excised circle were generated

using genomic DNA from RapI-induced CAL874. Primer

sequences are presented in Table 3.

Detecting integration at yrkM in a pool of

transconjugants. ICEBs1 was transferred from donor strain

KM250 to recipient KM524 by conjugation, selecting for resistance

to kanamycin and MLS antibiotics. Approximately 108 transconju-

gants were collected from four separate conjugation experiments

(done on filters placed on agar plates). Cells were washed off of all

four filters with a total of 10 ml of minimal salts and aliquots of

0.2 ml were spread on selective plates to give ,26106 transconju-

gants per plate. After overnight growth, plates (,50) with the

transconjugants were flooded with minimal salts, cells were scraped,

collected, and transconjugants from all plates were pooled.

DNA was isolated from the pool of transconjugants and used as a

template for qPCR with primers to detect the junction between

yrkM and ICEBs1 (primers CLO116 and KM76). Values from this

qPCR were compared to qPCR values for a reference gene (cotF).

Values were normalized to a strain (KM72) that contains

yrkM::ICEBs1 and represents 100% integration at yrkM. Values

for yrkM::ICEBs1 in the pool of transconjugants were in the linear

range of the qPCR and $3-fold above the background signal from

the negative control (JMA222, which is cured of ICEBs1). DNA

used for standard curves was from strain KM72 (yrkM::ICEBs1).

The frequency of integration at attB was determined by qPCR with

primers CLO273 and CLO264. Values were compared to cotF and

normalized to a strain with ICEBs1 at attB (strain AG174 or

CAL874). DNA used for standard curves was from AG174 or

CAL874. The entire experiment was done twice with similar results.

Detecting integration at secondary sites after mating

from a secondary site. Independent transconjugants, from

donors with ICEBs1 at secondary attachment sites, were analyzed

for the location of ICEBs1. Sites analyzed and primers used

included: yrkM (CLO116-CLO17 or oJMA141-CLO17); mmsA

(CLO109-oJMA141); yycJ (CLO17-KM4); srfAA (oJMA141-

KM5); and attB (CLO17-oJMA100). The presence of ICEBs1 in

the transconjugants was verified using primers internal to ICEBs1

(oJMA102-oJMA22).

Cell viability assays
Strains were grown in defined minimal medium with arabinose

and expression of Pxyl-rapI was induced with 1% xylose at OD600

of 0.05. The number of colony forming units (CFU) was

determined 3 hours after addition of xylose. For each strain, the

number of CFU/ml 3 hrs after expression of Pxyl-rapI was

compared to the number of CFU/ml without expression of Pxyl-

rapI. All experiments were done at least twice.

ß-galactosidase assays
Cells were grown and treated as described for viability assays.

Samples were taken 3 hours after induction of Pxyl-rapI. All

experiments were done at least twice. ß-galactosidase assays were

done essentially as described [36,37]. Specific activity is expressed

as the (DA420 per min per ml of culture per OD600 unit)61000.

Modeling competition between cells with ICEBs1 in the
primary attachment site versus cells with ICEBs1 in a
secondary attachment site

We calculated the predicted population size P after G

generations for cells in which ICEBs1 is integrated into a

Table 2. Cont.

Strain relevant genotype (comment and/or reference)

KM400 srfAA3::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac

KM402 ykrP16::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac

KM404 yrkM9(J9)::(ICEBs1 D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc} dinC18::Tn917lac

KM429 ykrP16::(ICEBs1 DhelP D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

KM437 DattR100::tet DhelP D(rapI-phrI)342::kan amyE::{(Pxyl-rapI) spc}

KM524 ICEBs10 (attB+) amyE::(lacZ, mls); used as recipient in conjugation to detect insertions in secondary sites

KM459 yvbT575::(ICEBs1 DhelP D(rapI-phrI)342::kan) amyE::{(Pxyl-rapI) spc}

MMB868 amyE::{(Pxyl-rapI) cat}

MMB869 amyE::{(Pxyl-rapI) spc} [30]

REM54 DattB::cat [10]

doi:10.1371/journal.pgen.1003623.t002
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secondary attachment site, with an estimated fraction of dead cells,

D. The estimate of dead cells is based on the fraction of cells in

which ICEBs1 is excised during exponential growth, determined

previously to be between 1025 to 1024. Population size

P = P0N2GN(12D)G, where P0 is the initial population size. The

ratio R of the number of cells with ICEBs1 at attB to the number of

cells with ICEBs1 in a secondary site is given by R = P0N2G (for

ICEBs1 in attB and assuming no killing upon induction)/

Table 3. Primers used.

Name Sequence1 Location, use, reference2

ABO14 CCAACGCAAAGATACCTTGC 59 yvbT; qPCR

ABO15 TGTTCAGCAAGCCAGTAACG 39 yvbT; qPCR

ABO17 CTGACATATACCACGCCCAC 59 yrkM; qPCR

ABO18 AAACGCAATCCGCTACTTCC 59 mmsA; qPCR

ABO19 GTATCATTGATGCGGCCCAG near left end of ICEBs1, 39 in trnS-leu2; qPCR to detect ICEBs1 circle or left junction in
chromosome

CLO109 GATATCTTGCCGTCACCACT 39 mmsA; qPCR

CLO114 CTTAATGCTATAAATAAAGGCTTTTG in ICEBs1, near and extending towards the right end, in same direction as
transcription of trnS-leu2; PCR, qPCR, sequencing

CLO116 CGCAGAGAGTTGCTGGTAAC just upstream of yrkM (35 codons), in same direction as transcription of yrkM (59);
qPCR, PCR

CLO117 TGTAGAGTTCCTTGGCCTCT just downstream of yrkM, in opposite direction of transcription of yrkM (39); qPCR,
PCR

CLO17 CCATTTACTGCCCAGAATAAATAACAAATCATG in ICEBs1, near and extending towards the right end, in same direction as
transcription of trnS-leu2 [10]; ,50 bp farther from the right end of ICEBs1 than
CLO114; PCR, qPCR, sequencing

CLO257 GGATGAACGCAGAACATTGG 59 cotF, chromosomal gene for reference; qPCR

CLO258 GCTCAACACCCTGAATAGAC 39 cotF, chromosomal gene for reference; qPCR

CLO261 GCCTACTAAACCAGCACAAC 59, just upstream of trnS-leu2; qPCR [15,30]

CLO262 AGCAAGTCTTCTCCCATAGC 39, just outside the right end of ICEBs1; qPCR [15,30]

CLO264 TATTGAGATGCGGCCGAGAG 39 trnS-leu2, downstream from attB; qPCR, to detect integration of ICEBs1 in attB

CLO273 AGGGCGAACTATGAGTTTGC near and extending towards right end of ICEBs1;
qPCR, to detect integration of ICEBs1 in attB

CLO50 GCCTTCTGCGTCCGGTCG In kan; near right end of ICEBs1 D(rapI-phrI)::kan; inverse PCR, sequencing [10]

CLO58 CGCGGATCCGACTGTACCGTACGTTTTTAAAGATGATGTAAC in yddM; inverse PCR, sequencing [10]

KM15 AGTCCGCTTACCAGGGTAAC qPCR; 39 ykrP; qPCR

KM16 GAGCTTGTCACGGACATTCG qPCR; 59 ykrP; qPCR

KM18 TATACAGCCAAAGCGGAGTG qPCR; 39 yycJ; qPCR

KM19 ATGTCATTGGCGATGAGACG qPCR; 59 yycJ; qPCR

KM20 GAATTAGGCGAGCGCTTAGG qPCR; 59 spoVD; qPCR

KM21 CTGTCCGAAAGCCGTAGTTG qPCR; 39 spoVD; qPCR

KM22 GCTCCGCATGGTCTATCGTG qPCR; 59 srfAA; qPCR

KM23 TTGCAAACGCTCCGCTTCTC qPCR; 39 srfAA; qPCR

KM4 CGGACTTGATGTTGAATCGTTTGGCGTTTCCC 59 yycJ; PCR

KM5 GGAGAATACAAAGCGCCGACGACCGACATGG 59 srfAA; PCR

KM76 AAAGGCTTTTGTAAATAAAG In ICEBs1 near and amplifies towards the right end; qPCR

oJMA100 GGGTATACAATCATGGGTGATCGAG in yddN, outside, but near and amplifies towards the right end of ICEBs1; PCR
[10,11,22]

oJMA102 TAATCTAAGCTTCACCTCCTCGTTAACTCAACTC In ICEBs1 in xis, amplifies towards the left end of ICEBs1; PCR [22]

oJMA141 CTTACTTTAGGTAAGTGGGCAGTTTGTGG Overlaps the 39 end of int in ICEBs1; amplifies toward attL (into trnS-leu2); PCR [10]

oJMA207 GGATGAATTGTTTTAGTACCTAGATTTAGATGTC In kan; near right end of ICEBs1 D(rapI-phrI)::kan; amplifies toward left end of ICEBs1;
inverse PCR, sequencing

oJMA227 ATATAAGCTTGCCTAGGCTCATTTTTATCATC in ICEBs1, upstream of ydcN; amplifies toward the left end of ICEBs1; PCR

oJMA97 CTGTAAATTATGAATCTCAGATTGTTAATCCTGC in ICEBs1 in yddM, amplifies toward right end of ICEBs1; inverse PCR [10,11,22]

1sequences are indicated 59 to 39.
2the relevant location of each primer is indicated, along with how the primer was used. Primers to chromosomal regions are usually near the site of integration of
ICEBs1. The position, 59 or 39, in the indicated gene is relative to the direction of transcription of that gene, 59 indicating extension in the same and 39 indicating
extension in the opposite direction as transcription. Left and right ends of ICEBs1 are as in Figure 1.
doi:10.1371/journal.pgen.1003623.t003
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P0N2GN(12D)G (for ICEBs1 in a secondary site). This equation

reduces to R = 1/(12D)G. This gives G = {log (1/R)}/log (12D).

For the number of cells with ICEBs1 in attB to be 10-fold greater

than the number of cells with ICEBs1 in a secondary site (R = 10)

and if the frequency of death if ,1024 for the secondary site

insertions, then the number of generations to achieve R = 10 is:

G = log(0.1)/log(0.9999) which is ,23,000.
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