683 research outputs found
The multifocal pattern electroretinogram in chloroquine retinopathy
Purpose: Optimal screening for ocular toxicity caused by chloroquine and hydroxychloroquine is still controversial. With the multifocal pattern electroretinogram (mfPERG), a new electrophysiological technique has recently become available to detect early changes of ganglion cells. In this study this new technique is applied to a series of 10 patients seen consecutively receiving long-term chloroquine medication. Methods: In 10 patients receiving chloroquine medication, clinical examination, Amsler visual field testing and computerized color vision testing were performed. If toxicity was suspected, automated perimetry was carried out. In addition, in all patients conventional pattern electroretinogram (PERG) and mfPERG testing were performed. Results: On clinical examination 8 patients showed no chloroquine-associated maculopathy, while 2 patients did. Of these 2, only 1 reported abnormalities when viewing the Amsler chart, while automated perimetry showed typical, ring-like paracentral scotomas in both affected patients and color vision was significantly abnormal. In the normal patients, 4 of 8 had a mild color vision disturbance, which correlated to age-related macular changes. The amplitudes of the PERG and the central (approximately 10degrees) responses of the mfPERG were markedly reduced in chloroquine maculopathy, while the latencies were unchanged. The peripheral rings of mfPERG (ranging to 48degrees) were not affected by chloroquine toxicity. Both PERG and mfPERG were less affected by age-related macular changes. Conclusions: The reduction of PERG and central mfPERG responses in chloroquine maculopathy may help with the early detection of toxicity. Copyright (C) 2004 S. Karger AG, Basel
Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture
We report on the observation of an elementary exchange process in an
optically trapped ultracold sample of atoms and Feshbach molecules. We can
magnetically control the energetic nature of the process and tune it from
endoergic to exoergic, enabling the observation of a pronounced threshold
behavior. In contrast to relaxation to more deeply bound molecular states, the
exchange process does not lead to trap loss. We find excellent agreement
between our experimental observations and calculations based on the solutions
of three-body Schr\"odinger equation in the adiabatic hyperspherical
representation. The high efficiency of the exchange process is explained by the
halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure
Nitrogen forms affect root structure and water uptake in the hybrid poplar
The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)
Integrating Low- and High-Level Skills in Instructional Protocols for Writing Disabilities
Twenty-four children with writing problems were given instruction in handwriting automaticity, spelling strategies, and the composing process (plan, write, review, revise) in 14 one-hour individual tutorials during the summer between third and fourth grade. Half the children (8 boys, 4 girls) received extra practice in composing, while half the children (8 boys, 4 girls) received special training in orthographic and phonological coding. Hierarchical linear modeling of growth curves was used to compare the treatment groups to a non-contact control group (10 boys, 5 girls) on a standard battery at pretest, midtest, posttest, and the two treatment groups with each other on probe measures of handwriting, spelling, and composition in each tutorial session. The treatment groups improved at a faster rate than the control group on some measures of handwriting, spelling, and composition (fluency and quality) in the standard battery, but Verbal IQ did not predict rate of improvement. Differences were found between the two treatment groups in some probe measures of writing and a motivation variable (work avoidance). Repeated-measures ANOVA was used to compare treatment groups to a non-contact control group at pretest, midtest, posttest, and follow-up. Differences between the treatment and control groups favoring the treatment groups were maintained at 6- month follow-up on some handwriting, spelling, and composition (quality) measures. Individual differences were found in learner characteristics prior to treatment and in response to the same treatment. The importance of affect and motivation as well as cognitive variables is emphasized
Cognitive predictors of shallow-orthography spelling speed and accuracy in 6th grade children
Spelling accuracy and time course was investigated in a sample of 100 Norwegian 6th grade students completing a standardized spelling-to-dictation task. Students responded by keyboard with accurate recordings of response-onset latency (RT) and inter-keypress interval (IKI). We determined effects of a number of child-level
cognitive ability factors, and of word-level factors—particularly the location within the word of a spelling challenge (e.g., letter doubling), if present. Spelling
accuracy was predicted by word reading (word split) performance, non-word spelling accuracy, keyboard key-finding speed and short-term memory span. Word reading performance predicted accuracy just for words with spelling challenges. For correctly spelled words, RT was predicted by non-word spelling response time and by speed on a key-finding task, and mean IKI by non-verbal cognitive ability, word reading, non-word spelling response time, and key-finding speed. Compared to words with no challenge, mean IKI was shorter for words with an initial challenge and longer for words with a mid-word challenge. These findings suggest that spelling is not fully planned when typing commences, a hypothesis that is confirmed by the fact that IKI immediately before within word challenges were reliably longer than elsewhere within the same word. Taken together our findings imply that routine classroom spelling tests better capture student competence if they focus not only on accuracy but also on production time course
Efimov Resonances in Ultracold Quantum Gases
Ultracold atomic gases have developed into prime systems for experimental
studies of Efimov three-body physics and related few-body phenomena, which
occur in the universal regime of resonant interactions. In the last few years,
many important breakthroughs have been achieved, confirming basic predictions
of universal few-body theory and deepening our understanding of such systems.
We review the basic ideas along with the fast experimental developments of the
field, focussing on ultracold cesium gases as a well-investigated model system.
Triatomic Efimov resonances, atom-dimer Efimov resonances, and related
four-body resonances are discussed as central observables. We also present some
new observations of such resonances, supporting and complementing the set of
available data.Comment: 23 pages, 13 figure
Net primary production of Chinese fir plantation ecosystems and its relationship to climate
Peer reviewe
Common brain structure findings across children with varied reading disability profiles
Dyslexia is a developmental disorder in reading that exhibits varied patterns of expression across children. Here we examined the degree to which different kinds of reading disabilities (defined as profiles or patterns of reading problems) contribute to brain morphology results in Jacobian determinant images that represent local brain shape and volume. A matched-pair brain morphometry approach was used to control for confounding from brain size and research site effects in this retrospective multi-site study of 134 children from eight different research sites. Parietal operculum, corona radiata, and internal capsule differences between cases and controls were consistently observed across children with evidence of classic dyslexia, specific comprehension deficit, and language learning disability. Thus, there can be common brain morphology findings across children with quite varied reading disability profiles that we hypothesize compound the developmental difficulties of children with unique reading disability profiles and reasons for their reading disability
Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample
Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders
Overestimation of alternative splicing caused by variable probe characteristics in exon arrays
In higher eukaryotes, alternative splicing is a common mechanism for increasing transcriptome diversity. Affymetrix exon arrays were designed as a tool for monitoring the relative expression levels of hundreds of thousands of known and predicted exons with a view to detecting alternative splicing events. In this article, we have analyzed exon array data from many different human and mouse tissues and have uncovered a systematic relationship between transcript-fold change and alternative splicing as reported by the splicing index. Evidence from dilution experiments and deep sequencing suggest that this effect is of technical rather than biological origin and that it is driven by sequence features of the probes. This effect is substantial and results in a 12-fold overestimation of alternative splicing events in genes that are differentially expressed. By cross-species exon array comparison, we could further show that the systematic bias persists even across species boundaries. Failure to consider this effect in data analysis would result in the reproducible false detection of apparently conserved alternative splicing events. Finally, we have developed a software in R called COSIE (Corrected Splicing Indices for Exon arrays) that for any given set of new exon array experiments corrects for the observed bias and improves the detection of alternative splicing (available at www.fmi.ch/groups/gbioinfo)
- …
