778 research outputs found
Spatial structure and composition of polysaccharide-protein complexes from Small Angle Neutron Scattering
We use Small Angle Neutron Scattering (SANS), with an original analysis
method, to obtain both the characteristic sizes and the inner composition of
lysozyme-pectin complexes depending on the charge density. Lysozyme is a
globular protein and pectin a natural anionic semiflexible polysaccharide with
a degree of methylation (DM) 0, 43 and 74. For our experimental conditions
(buffer ionic strength I = 2.5 10-2 mol/L and pH between 3 and 7), the
electrostatic charge of lysozyme is always positive (from 8 to 17 depending on
pH). The pectin charge per elementary chain segment is negative and can be
varied from almost zero to one through the change of DM and pH. The weight
molar ratio of lysozyme on pectin monomers is kept constant. The ratio of
negative charge content per volume to positive charge content per volume, -/+,
is varied between 10 and 0.007. On a local scale, for all charged pectins, a
correlation peak appears at 0.2 {\AA}-1 due to proteins clustering inside the
complexes. On a large scale, the complexes appear as formed of spherical
globules with a well defined radius of 10 to 50 nm, containing a few thousands
proteins. The volume fraction Phi of organic matter within the globules derived
from SANS absolute cross-sections is around 0.1. The protein stacking, which
occurs inside the globules, is enhanced when pectin is more charged, due to pH
or DM. The linear charge density of the pectin determines the size of the
globules for pectin chains of comparable molecular weights whether it is
controlled by the pH or the DM. The radius of the globules varies between 10 nm
and 50 nm. In conclusion the structure is driven by electrostatic interactions
and not by hydrophobic interactions. The molecular weight also has a large
influence on the structure of the complexes since long chains tend to form
larger globules. This maybe one reason why DM and pH are not completely
equivalent in our system since DM 0 has a short mass, but this may not be the
only one. For very low pectin charge (-/+ = 0.07), globules do not appear and
the scattering signals a gel-like structure. We did not observe any
beads-on-a-string structure
Foaming properties of protein/pectin electrostatic complexes and foam structure at the nanoscale
The foaming properties, foaming capacity and foam stability, of soluble
complexes of pectin and a globular protein, napin, have been investigated with
a "Foamscan" apparatus. Complementary, we also used SANS with a recent method
consisting in an analogy between the SANS by foams and the neutron reflectivity
of films to measure in situ film thickness of foams. The effect of ionic
strength, of protein concentration and of charge density of the pectin has been
analysed. Whereas the foam stability is improved for samples containing soluble
complexes, no effect has been noticed on the foam film thickness, which is
almost around 315 {\AA} whatever the samples. These results let us specify the
role of each specie in the mixture: free proteins contribute to the foaming
capacity, provided the initial free protein content in the bulk is sufficient
to allow the foam formation, and soluble complexes slow down the drainage by
their presence in the Plateau borders, which finally results in the
stabilisation of foams
Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization.
International audienceThe present paper investigates the rheological properties of silated hydroxypropylmethylcellulose (Si-HPMC) biohydrogel used for biomaterials and tissue engineering applications. The general property of this modified cellulose ether is the occurrence of self-hardening due to silanol condensation subsequent to a decrease in pH (from 12.4 to nearly 7.4). The behavior of unsterilized and sterilized Si-HPMC solutions in diluted and concentrated domains is first described and compared. In addition, the influence of physiological parameters such as pH and temperature on the rate of the gelation process is studied. In dilute solution, the intrinsic viscosity ([eta]) of different pre-steam sterilization Si-HPMC solutions indicates that macromolecular chains occupy a larger hydrodynamic volume than the post-steam sterilization Si-HPMC solutions. Although the unsterilized Si-HPMC solutions demonstrate no detectable influence of pH upon the rheological behavior, a decrease in the limiting viscosities (eta(0)) of solutions with increasing pH is observed following steam sterilization. This effect can be explained by the formation of intra- and intermolecular associations during the sterilization stage originating from the temperature-induced phase separation. The formation of Si-HPMC hydrogels from injectable aqueous solution is studied after neutralization by different acid buffers leading to various final pHs. Gelation time (t(gel)) decreases when pH increases (t(gel) varies from 872 to 11s at pH 7.4 and 11.8, respectively). The same effect is observed by increasing the temperature from 20 to 45 degrees C. This is a consequence of the synergistic effect of the increased reaction rate and acid buffer diffusion. pH and temperature are important parameters in the gelation process and their influence is a key factor in controlling gelation time. By adapting the gel parameters one could propose hydrogels with cross-linking properties adapted to clinical applications by controlling the amount of pH of neutralization and temperature
Micelle formation, gelation and phase separation of amphiphilic multiblock copolymers
The phase behaviour of amphiphilic multiblock copolymers with a large number
of blocks in semidilute solutions is studied by lattice Monte Carlo
simulations. The influence on the resulting structures of the concentration,
the solvent quality and the ratio of hydrophobic to hydrophilic monomers in the
chains has been assessed explicitely. Several distinct regimes are put in
evidence. For poorly substituted (mainly hydrophilic) copolymers formation of
micelles is observed, either isolated or connected by the hydrophilic moieties,
depending on concentration and chain length. For more highly substituted chains
larger tubular hydrophobic structures appear which, at higher concentration,
join to form extended hydrophobic cores. For both substitution ratios gelation
is observed, but with a very different gel network structure. For the poorly
substituted chains the gel consists of micelles cross-linked by hydrophilic
blocks whereas for the highly substituted copolymers the extended hydrophobic
cores form the gelling network. The interplay between gelation and phase
separation clearly appears in the phase diagram. In particular, for poorly
substituted copolymers and in a narrow concentration range, we observe a
sol-gel transition followed by an inverse gel-sol transition when increasing
the interaction energy. The simulation results are discussed in the context of
the experimentally observed phase properties of methylcellulose, a
hydrophobically substituted polysaccharide.Comment: 14 pages, 14 figures; Soft Matter (2011
Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis
The flexibility/rigidity of pectins plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. Earlier studies based on sedimentation analysis in the ultracentrifuge have focused on molecular weight distributions and qualitative and semi-quantitative descriptions based on power law and Wales-van Holde treatments of conformation in terms of "extended" conformations [Harding, S. E., Berth, G., Ball, A., Mitchell, J.R., & Garcìa de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15; Morris, G. A., Foster, T. J., & Harding, S.E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids, 14, 227-235]. In the present study, four pectins of low degree of esterification 17-27% and one of high degree of esterification (70%) were characterised in aqueous solution (0.1 M NaCl) in terms of intrinsic viscosity [η], sedimentation coefficient (s°20,w) and weight average molar mass (Mw). Solution conformation/flexibility was estimated qualitatively using the conformation zoning method [Pavlov, G.M., Rowe, A.J., & Harding, S.E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405] and quantitatively (persistence length Lp) using the traditional Bohdanecky and Yamakawa-Fujii relations combined together by minimisation of a target function. Sedimentation conformation zoning showed an extended coil (Type C) conformation and persistence lengths all within the range Lp=10-13 nm (for a fixed mass per unit length)
Elasticity near the vulcanization transition
Signatures of the vulcanization transition--amorphous solidification induced
by the random crosslinking of macromolecules--include the random localization
of a fraction of the particles and the emergence of a nonzero static shear
modulus. A semi-microscopic statistical-mechanical theory is presented of the
latter signature that accounts for both thermal fluctuations and quenched
disorder. It is found (i) that the shear modulus grows continuously from zero
at the transition, and does so with the classical exponent, i.e., with the
third power of the excess cross-link density and, quite surprisingly, (ii) that
near the transition the external stresses do not spoil the spherical symmetry
of the localization clouds of the particles.Comment: REVTEX, 5 pages. Minor change
Quelques lignes Claude Simon
En parlant d’un autre, en l’occurrence de Claude Simon, en parlant avec un autre, le même, l’un et l’autre toujours présentsabsents, cela s’appelle un dialogue, ce qui « appartient » à l’un et ce qui « appartient » à l’autre se mêlent inextricablement. Parler de Claude Simon, ou avec lui, était et reste très difficile. Les lignes dites de la vie et celles de l’œuvre se nouent et se dénouent dans un réseau de renvois. Il n’y a pas un plan irrécusable sur lequel ce qui se rencontre et qui se ra..
Quelques lignes Claude Simon
En parlant d’un autre, en l’occurrence de Claude Simon, en parlant avec un autre, le même, l’un et l’autre toujours présentsabsents, cela s’appelle un dialogue, ce qui « appartient » à l’un et ce qui « appartient » à l’autre se mêlent inextricablement. Parler de Claude Simon, ou avec lui, était et reste très difficile. Les lignes dites de la vie et celles de l’œuvre se nouent et se dénouent dans un réseau de renvois. Il n’y a pas un plan irrécusable sur lequel ce qui se rencontre et qui se ra..
COI1-dependent jasmonate signalling affects growth, metabolites production and cell wall protein composition in Arabidopsis
Background and Aims:
Cultured cell suspensions have been the preferred model to study the apoplast as well as to monitor metabolic and cell cycle-related changes. Previous work showed that methyl jasmonate (MeJA) inhibits leaf growth in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, with COI1 being the jasmonate (JA) receptor. Here, the effect of COI1 overexpression on the growth of stably transformed arabidopsis cell cultures is described.
Methods:
Time-course experiments were carried out to analyse gene expression, and protein and metabolite levels.
Key Results:
Both MeJA treatment and the overexpression of COI1 modify growth, by altering cell proliferation and expansion. DNA content as well as transcript patterns of cell cycle and cell wall remodelling markers were altered. COI1 overexpression also increases the protein levels of OLIGOGALACTURONIDE OXIDASE 1, BETA-GLUCOSIDASE/ENDOGLUCANASES and POLYGALACTURONASE INHIBITING PROTEIN2, reinforcing the role of COI1 in mediating defence responses and highlighting a link between cell wall loosening and growth regulation. Moreover, changes in the levels of the primary metabolites alanine, serine and succinic acid of MeJA-treated Arabidopsis cell cultures were observed. In addition, COI1 overexpression positively affects the availability of metabolites such as β-alanine, threonic acid, putrescine, glucose and myo-inositol, thereby providing a connection between JA-inhibited growth and stress responses.
Conclusions:
This study contributes to the understanding of the regulation of growth and the production of metabolic resources by JAs and COI1. This will have important implications in dissecting the complex relationships between hormonal and cell wall signalling in plants. The work also provides tools to uncover novel mechanisms co-ordinating cell division and post-mitotic cell expansion in the absence of organ developmental control
- …
