126 research outputs found

    Building dynamic response due to incident wave field considering soil-structure interaction

    Get PDF
    En este artículo se presentan dos metodologías basadas en las formulaciones de los métodos de los elementos de contorno y de los elementos finitos para estudiar el efecto de la interacción suelo-estructura en el comportamiento dinámico de edificaciones. Se ha estudiado la respuesta de un edificio de tres plantas producida por un campo de ondas incidente con los dos métodos propuestos. Los resultados obtenidos presentan un buen grado de acuerdo entre ellos. A partir de estos resultados se ha validado un modelo aproximado para estudiar este tipo de problemas y se han examinado diferentes tipolog ́ıas de edificaciones. Las conclusiones alcanzadas muestran que la respuesta global de las estructuras se debe a la deformación de los forjados, y depende de la superficie de estos, de las condiciones de apoyo y del acoplamiento con los forjados de la misma planta. Del mismo modo, se ha observado un acoplamiento del comportamiento de pilares y forjados cuando las rigideces de ambos son similaresThis paper presents two methodologies based on the boundary element method and the finite element method to study soil-structure interaction effect on building behaviour. A three-story building response induced by an incident wave field is studied using both methods. The obtained results show a good agreement. Then, a simplified model is validated from these methods and several buildings are analysed. Conclusions show that structural responses are due to floors deformation, and depend on their area, support conditions and coupling. It is also observed a coupling between floors and columns when both elements have similar stiffness.Ministerio de Economía y Competitividad BIA2010-14843Junta de Andalucía, Consejería de Economía, Innovación, Ciencia y Emple

    Scoping methodology to asses induced vibration by railway traffic in buildings

    Get PDF
    This work presents a scoping model to predict ground-borne railway vibration levels within buildings considering soil-structure interaction (SSI). It can predict the response of arbitrarily complex buildings in a fraction of the time typically required to analyse a complex SSI problem, and thus provides a practical tool to rapidly analyse the vibration response of numerous structures near railway lines. The tool is designed for use in cases where the ground-borne vibration is known, and thus can be used as model input. Therefore in practice, for the case of a new line, the ground motion can be computed numerically, or alternatively, for the case of new buildings to be constructed near an existing line, it can be recorded directly (e.g. using accelerometers) and used as model input. To achieve these large reductions in computational time, the model discretises the ground-borne vibration in the free field into a frequency range corresponding to the modes that characterize the dynamic building response. After the ground-borne response spectra that corresponds with the incident wave field is estimated, structural vibration levels are computed using modal superposition, thus avoiding intensive soil-structure interaction computations. The model is validated using a SSI problem and by comparing results against a more complex finite element-boundary element model. Finally, the new scoping model is then used to analyse structural-borne vibration. The results show that the scoping model provides a powerful tool for use during the early design stages of a railway system when a large number of structures require analysis

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils

    Get PDF
    This paper outlines a vibration prediction tool, ScopeRail, capable of predicting in-door noise and vibration, within structures in close proximity to high speed railway lines. The tool is designed to rapidly predict vibration levels over large track distances, while using historical soil information to increase accuracy. Model results are compared to an alternative, commonly used, scoping model and it is found that ScopeRail offers higher accuracy predictions. This increased accuracy can potentially reduce the cost of vibration environmental impact assessments for new high speed rail lines. To develop the tool, a three-dimensional finite element model is first outlined capable of simulating vibration generation and propagation from high speed rail lines. A vast array of model permutations are computed to assess the effect of each input parameter on absolute ground vibration levels. These relations are analysed using a machine learning approach, resulting in a model that can instantly predict ground vibration levels in the presence of different train speeds and soil profiles. Then a collection of empirical factors are coupled with the model to allow for the prediction of structural vibration and in-door noise in buildings located near high speed lines. Additional factors are also used to enable the prediction of vibrations in the presence of abatement measures (e.g. ballast mats and floating slab tracks) and additional excitation mechanisms (e.g. wheelflats and switches/crossings)

    Real scale evaluation of vibration mitigation of sub-ballast layers with added tyre-derived aggregate

    Full text link
    [EN] This paper represents a final stage in the assessment of granular sub-ballast materials mixed with tyre-derived aggregate (TDA) without binder material. The objective is to evaluate such mixtures through a full-scale test under real traffic conditions. An experimental track with three 30-metre long sections was constructed: one section was built with conventional sub-ballast; and the other two sections were built with mixtures containing increasing rubber content. This track was then monitored using accelerometers. The results show a clear reduction in the acceleration peaks as rubber content increases. Moreover, the excited frequency bandwidth tends to become narrower and shifts to lower frequencies.The works presented in this paper are part of a research project (Project COMPOVIA) funded by the Spanish CDTI (Centro para el Desarrollo Tecnologico Industrial) and the CTA (Corporacion TecnolOgica de Andalucia). The authors also wish to thank ADIF for their collaboration during the measurements carried out in its facilities.Martínez Fernández, P.; Hidalgo Signes, C.; Villalba Sanchis, I.; Pérez Mira, D.; Insa Franco, R. (2018). Real scale evaluation of vibration mitigation of sub-ballast layers with added tyre-derived aggregate. Construction and Building Materials. 169:335-346. https://doi.org/10.1016/j.conbuildmat.2018.03.027S33534616

    Field testing and analysis of high speed rail vibrations

    Get PDF
    This paper outlines an experimental analysis of ground-borne vibration levels generated by high speed rail lines on various earthwork profiles (at-grade, embankment, cutting and overpass). It also serves to provide access to a dataset of experimental measurements, freely available for download by other researchers working in the area of railway vibration (e.g. for further investigation and/or the validation of vibration prediction models). First, the work outlines experimental investigations undertaken on the Belgian high speed rail network to investigate the vibration propagation characteristics of three different embankment conditions. The sites consist of a 5.5 m high embankment, an at-grade section and a 7.2 m deep cutting. The soil material properties of each site are determined using a ‘Multichannel Analysis of Surface Waves’ technique and verified using refraction analysis. It is shown that all sites have relatively similar material properties thus enabling a generalised comparison. Vibration levels are measured in three directions, up to 100 m from the track due to three different train types (Eurostar, TGV and Thalys) and then analysed statistically. It is found that contrary to commonly accepted theory, vertical vibrations are not always the most dominant, and that horizontal vibrations should also be considered, particularly at larger offsets. It is also found that the embankment earthworks profile produced the lowest vibration levels and the cutting produced the highest. Furthermore, a low (positive) correlation between train speed and vibration levels was found. A selection of the results can be downloaded from www.davidpconnolly.com

    Numerical modelling of ground borne vibrations from high speed rail lines on embankments

    Get PDF
    A three dimensional numerical model is presented capable of modelling the propagation and transmission of ground vibration in the vicinity of high speed railways. It is used to investigate the effect of embankment constituent material on ground borne vibration levels at various distances from the track. The model is a time domain explicit, dynamic finite element model capable of simulating non-linear excitation mechanisms. The entire model, including the wheel/rail interface is fully coupled. To account for the unbounded nature of the soil structure an absorbing boundary condition (infinite element) is placed at the truncated interfaces. To increase boundary absorption performance, the soil structure is modelled using an elongated spherical geometry. The complex geometries associated with the track components are modelled in detail thus allowing a highly realistic simulation of force transmission from vehicle to embankment. Lastly, quasi-static and dynamic excitation mechanisms of the vehicle locomotives are described using a multi-body approach which is fully coupled to the track using non-linear Hertzian contact theory. The resulting model is verified using experimental ground borne vibration data from high speed trains, gathered through field trials. It is then used to investigate the role of embankments in the transmission of vibration. It is found that soft embankments exhibit large deflections and act as a waveguide for railway vibrations which are trapped within the structure. This results in increased vibration levels both inside the embankment and in the surrounding soil. In contrast it is found that embankments formed from stiffer material reduce vibrations in the near and far fields

    The stiffening of soft soils on railway lines

    Get PDF
    Railway tracks experience elevated rail deflections when the supporting soil is soft and/or the train speed is greater than approximately 50% of the wave propagation velocity in the track-soil system (i.e. the critical velocity). Such vibrations are undesirable, so soil replacement or soil improvement of the natural soil (or alternatively mini-piles or lime-cement treatment) is often used to increase track-ground stiffness prior to line construction. Although areas of existing soft subgrade might be easily identified on a potential new rail route, it is challenging to determine the type and depth of ground remediation required. Therefore, major cost savings can be made by optimising ground replacement/improvement strategies. This paper presents a numerical railway model, designed for the dynamic analysis of track-ground vibrations induced by high speed rail lines. The model simulates the ground using a thin-layer finite element formulation capable of calculating 3D stresses and strains within the soil during train vehicle passage. The railroad track is modelled using a multi-layered formulation which permits wave propagation in the longitudinal direction, and is coupled with the soil model in the frequency-wavenumber domain. The model is validated using a combination of experimental railway field data, published numerical data and a commercial finite element package. It is shown to predict track and ground behaviour accurately for a range of train speeds. The railway simulation model is computationally efficient and able to quickly assess dynamic, multi-layered soil response in the presence of ballast and slab track structures. Therefore it is well-suited to analysing the effect of different soil replacement strategies on dynamic track behaviour, which is particularly important when close to critical speed. To show this, three soil-embankment examples are used to compare the effect of different combinations of stiffness improvement (stiffness magnitude and remediation depths up to 5 m) on track behaviour. It is found that improvement strategies must be carefully chosen depending upon the track type and existing subgrade layering configuration. Under certain circumstances, soil improvement can have a negligible effect, or possibly even result in elevated track vibration, which may increase long-term settlement. However, large benefits are possible, and if detailed analysis is performed, it is possible to minimise soil improvement depth with respect to construction cost
    corecore