1,219 research outputs found

    Understanding and characterizing nestedness in mutualistic bipartite networks

    Full text link
    In this work we present a dynamical model that succesfully describes the organization of mutualistic ecological systems. The main characteristic of these systems is the nested structure of the bipartite adjacency matrix describing their interactions. We introduce a nestedness coefficient, as an alternative to the Atmar and Patterson temperature, commonly used to measure the nestedness degree of the network. This coefficient has the advantage of being based on the robustness of the ecological system and it is not only describing the ordering of the bipartite matrix but it is also able to tell the difference, if any, between the degree of organization of each guild.Comment: oral talk in Computer Physics Conference CCP2008, Brazi

    Safety and pharmacokinetics of rimantadine small-particle aerosol.

    Get PDF

    Mutually-Antagonistic Interactions in Baseball Networks

    Get PDF
    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit interesting structural changes over time. We find interesting structure in the network and examine their sensitivity to baseball's rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to compare the performance of players who competed under different conditions and to include information about which particular players a given player has faced. We find that a player's position in the network does not correlate with his success in the random walker ranking but instead has a substantial effect on its sensitivity to changes in his own aggregate performance.Comment: A few clarifications added 14 pages, 2 tables, 6 figures. Submitte

    Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus

    Get PDF
    BACKGROUND:Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. DESIGN:Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. RESULTS:All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. CONCLUSIONS:These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated

    Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces

    Get PDF
    We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning

    Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients

    Get PDF
    Case reports describe significant norovirus gastroenteritis morbidity in immunocompromised patients. We evaluated norovirus pathogenesis in prospectively enrolled solid organ (SOT) and hematopoietic stem cell transplant (HSCT) patients with diarrhea who presented to Texas Children\u27s Hospital and submitted stool for enteric testing. Noroviruses were detected by real-time reverse transcription polymerase chain reaction. Clinical outcomes of norovirus diarrhea and non-norovirus diarrhea patients, matched by transplanted organ type, were compared. Norovirus infection was identified in 25 (22%) of 116 patients, more frequently than other enteropathogens. Fifty percent of norovirus patients experienced diarrhea lasting β‰₯14 days, with median duration of 12.5 days (range 1–324 days); 29% developed diarrhea recurrence. Fifty-five percent of norovirus patients were hospitalized for diarrhea, with 27% requiring intensive care unit (ICU) admission. One HSCT recipient developed pneumatosis intestinalis. Three HSCT patients expired ≀6 months of norovirus diarrhea onset. Compared to non-norovirus diarrhea patients, norovirus patients experienced significantly more frequent ICU admission (27% vs. 0%, p = 0.02), greater serum creatinine rise (median 0.3 vs. 0.2 mg/dL, p = 0.01), and more weight loss (median 1.6 vs. 0.6 kg, p \u3c 0.01). Noroviruses are an important cause of diarrhea in pediatric transplant patients and are associated with significant clinical complications

    The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems

    Get PDF
    In economic systems, the mix of products that countries make or export has been shown to be a strong leading indicator of economic growth. Hence, methods to characterize and predict the structure of the network connecting countries to the products that they export are relevant for understanding the dynamics of economic development. Here we study the presence and absence of industries at the global and national levels and show that these networks are significantly nested. This means that the less filled rows and columns of these networks' adjacency matrices tend to be subsets of the fuller rows and columns. Moreover, we show that nestedness remains relatively stable as the matrices become more filled over time and that this occurs because of a bias for industries that deviate from the networks' nestedness to disappear, and a bias for the missing industries that reduce nestedness to appear. This makes the appearance and disappearance of individual industries in each location predictable. We interpret the high level of nestedness observed in these networks in the context of the neutral model of development introduced by Hidalgo and Hausmann (2009). We show that, for the observed fills, the model can reproduce the high level of nestedness observed in these networks only when we assume a high level of heterogeneity in the distribution of capabilities available in countries and required by products. In the context of the neutral model, this implies that the high level of nestedness observed in these economic networks emerges as a combination of both, the complementarity of inputs and heterogeneity in the number of capabilities available in countries and required by products. The stability of nestedness in industrial ecosystems, and the predictability implied by it, demonstrates the importance of the study of network properties in the evolution of economic networks.Comment: 26 page
    • …
    corecore