371 research outputs found

    Sustainability Challenges for Maize and Cassava Farmers in Amankwakrom Subdistrict, Ghana

    Get PDF
    Agricultural system in Ghana underperformed because of limited financing, which constrained some small-scale maize and cassava farmers. The purpose of this case study design was to explore the methods that some small-scale maize and cassava farmers in Amankwakrom Subdistrict used in obtaining farm financing. Two themes from the literature review were a lack of collateral for small-scale farm financing and the small-scale farmers cooperative associations\u27 role in farm financing. Regional-scale management sustainability index formed the conceptual framework for this study. Data collection included semistructured face-to-face interviews with 8 fluent English speaking small-scale maize and cassava farmers who have obtained farm financing in the previous years. Using the Microsoft Excel and Non-numerical unstructured data indexing and theorizing software program for data analysis method, 3 major themes emerged: the farmer\u27s membership benefits of working in cooperative associations; farmer\u27s ability to provide the collateral requirements for the financial institutions; and farmer\u27s good loan repayment history. The study findings indicated that some small-scale maize and cassava farmers obtained farm loans because they used the cooperative associations as their collateral assets in order to satisfy for the requirements of the financial institutions. Social implications include the potential to guide the small-scale maize and cassava farmers to access farm credits to use in expanding their farm sizes. Expansion in farm sizes may result in more maize and cassava production that can help eliminate hunger and reduce poverty in the Amankwakrom Subdistrict of Ghana

    Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair

    Get PDF
    Histone deacetylase inhibitors (HDACi) developed as anti-cancer agents have a high degree of selectivity for killing cancer cells. HDACi induce acetylation of histones and nonhistone proteins, which affect gene expression, cell cycle progression, cell migration, and cell death. The mechanism of the tumor selective action of HDACi is unclear. Here, we show that the HDACi, vorinostat (Suberoylanilide hydroxamic acid, SAHA), induces DNA double-strand breaks (DSBs) in normal (HFS) and cancer (LNCaP, A549) cells. Normal cells in contrast to cancer cells repair the DSBs despite continued culture with vorinostat. In transformed cells, phosphorylated H2AX (γH2AX), a marker of DNA DSBs, levels increased with continued culture with vorinostat, whereas in normal cells, this marker decreased with time. Vorinostat induced the accumulation of acetylated histones within 30 min, which could alter chromatin structure-exposing DNA to damage. After a 24-h culture of cells with vorinostat, and reculture without the HDACi, γH2AX was undetectable by 2 h in normal cells, while persisting in transformed cells for the duration of culture. Further, we found that vorinostat suppressed DNA DSB repair proteins, e.g., RAD50, MRE11, in cancer but not normal cells. Thus, the HDACi, vorinostat, induces DNA damage which normal but not cancer cells can repair. This DNA damage is associated with cancer cell death. These findings can explain, in part, the selectivity of vorinostat in causing cancer cell death at concentrations that cause little or no normal cell death

    Individual patient oesophageal cancer 3D models for tailored treatment

    Get PDF
    Background: A model to predict chemotherapy response would provide a marked clinical benefit, enabling tailored treatment of oesophageal cancer, where less than half of patients respond to the routinely administered chemotherapy. Methods: Cancer cells were established from tumour biopsies taken from individual patients about to undergo neoadjuvant chemotherapy. A 3D-tumour growth assay (3D-TGA) was developed, in which cancer cells were grown with or without supporting mesenchymal cells, then subjected to chemo-sensitivity testing using the standard chemotherapy administered in clinic, and a novel emerging HDAC inhibitor, Panobinostat. Results: Individual patient’s cancer cells could be expanded and screened within a clinically applicable timescale of 3 weeks. Incorporating mesenchymal support within the 3D-TGA significantly enhanced both the growth and drug resistance profiles of the patient’s cancer cells. The ex vivo drug response in the presence, but not absence, of mesenchymal cells accurately reflected clinical chemo-sensitivity, as measured by tumour regression grade. Combination with Panobinostat enhanced response and proved efficacious in otherwise chemo-resistant tumours. Conclusions: This novel method of establishing individual patient oesophageal cancers in the laboratory, from small endoscopic biopsies, enables clinically-relevant chemo-sensitivity testing, and reduces use of animals by providing more refined in vitro models for pre-screening of drugs. The 3D-TGA accurately predicted chemo-sensitivity in patients, and could be developed to guide tailored patient treatment. The incorporation of mesenchymal cells as the stromal cell component of the tumour micro-environment had a significant effect upon enhancing chemotherapy drug resistance in oesophageal cancer, and could prove a useful target for future drug development

    miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging

    Get PDF
    Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non-coding miRNAs are potent post-transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age-related and senescence-related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid-based miRNA microarrays, we identified four commonly regulated miRNAs, miR-17 down-regulated in all seven; miR-19b and miR-20a, down-regulated in six models; and miR-106a down-regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans

    Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    Get PDF
    Purpose: Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods: Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out period. On days 5-9, ketoconazole was administered. On day 8, a single panobinostat dose was co-administered with ketoconazole. Panobinostat was administered as single agent three times a week on day 15 and onward. Results: In the presence of ketoconazole, there was 1.6- and 1.8-fold increase in Cmaxand AUC of panobinostat, respectively. No substantial change in Tmaxor half-life was observed. No difference in panobinostat-pharmacokinetics between patients carrying CYP3A5*1/*3 and CYP3A5*3/*3 alleles was observed. Most frequently reported adverse events were gastrointestinal related. Patients had asymptomatic hypophosphatemia (64%), and urine analysis suggested renal phosphate wasting. Conclusions: Co-administration of panobinostat with CYP3A inhibitors is feasible as the observed increase in panobinostat PK parameters was not considered clinically relevant. Considering the variability in exposure following enzyme inhibition and the fact that chronic dosing of panobinostat was not studied with CYP3A inhibitors, close monitoring of panobinostat-related adverse events is necessary

    A phase 1b/2b multicenter study of oral panobinostat plus azacitidine in adults with MDS, CMML or AML with less than or equal to 30% blasts

    Get PDF
    Treatment with azacitidine (AZA), a demethylating agent, prolonged overall survival (OS) vs conventional care in patients with higher-risk myelodysplastic syndromes (MDS). As median survival with monotherapy is <2 years, novel agents are needed to improve outcomes. This phase 1b/2b trial (n=113) was designed to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) of panobinostat (PAN)+AZA (phase 1b) and evaluate the early efficacy and safety of PAN+AZA vs AZA monotherapy (phase 2b) in patients with higher-risk MDS, chronic myelomonocytic leukemia or oligoblastic acute myeloid leukemia with <30% blasts. The MTD was not reached; the RP2D was PAN 30 mg plus AZA 75 mg/m2. More patients receiving PAN+AZA achieved a composite complete response ([CR)+morphologic CR with incomplete blood count+bone marrow CR (27.5% (95% CI, 14.6–43.9%)) vs AZA (14.3% (5.4–28.5%)). However, no significant difference was observed in the 1-year OS rate (PAN+AZA, 60% (50–80%); AZA, 70% (50–80%)) or time to progression (PAN+AZA, 70% (40–90%); AZA, 70% (40–80%)). More grade 3/4 adverse events (97.4 vs 81.0%) and on-treatment deaths (13.2 vs 4.8%) occurred with PAN+AZA. Further dose or schedule optimization may improve the risk/benefit profile of this regimen

    miR-17–92 cluster: ups and downs in cancer and aging

    Get PDF
    The miR-17–92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17–92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17–92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans

    HDAC inhibitor confers radiosensitivity to prostate stem-like cells

    Get PDF
    Background: Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction. Methods: Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser. Results: Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation. Interpretation: Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction

    Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer.</p> <p>Methods</p> <p>Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice.</p> <p>Results</p> <p>Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression.</p> <p>Conclusion</p> <p>Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment.</p

    Polycomb Target Genes Are Silenced in Multiple Myeloma

    Get PDF
    Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies
    corecore