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ABSTRACT
Background: A model to predict chemotherapy response would provide a marked 

clinical benefit, enabling tailored treatment of oesophageal cancer, where less than 
half of patients respond to the routinely administered chemotherapy.

Methods: Cancer cells were established from tumour biopsies taken from 
individual patients about to undergo neoadjuvant chemotherapy. A 3D-tumour growth 
assay (3D-TGA) was developed, in which cancer cells were grown with or without 
supporting mesenchymal cells, then subjected to chemo-sensitivity testing using the 
standard chemotherapy administered in clinic, and a novel emerging HDAC inhibitor, 
Panobinostat.

Results: Individual patient’s cancer cells could be expanded and screened within a 
clinically applicable timescale of 3 weeks. Incorporating mesenchymal support within 
the 3D-TGA significantly enhanced both the growth and drug resistance profiles of the 
patient’s cancer cells. The ex vivo drug response in the presence, but not absence, 
of mesenchymal cells accurately reflected clinical chemo-sensitivity, as measured by 
tumour regression grade. Combination with Panobinostat enhanced response and 
proved efficacious in otherwise chemo-resistant tumours. 

Conclusions: This novel method of establishing individual patient oesophageal 
cancers in the laboratory, from small endoscopic biopsies, enables clinically-relevant 
chemo-sensitivity testing, and reduces use of animals by providing more refined in 
vitro models for pre-screening of drugs. The 3D-TGA accurately predicted chemo-
sensitivity in patients, and could be developed to guide tailored patient treatment. 
The incorporation of mesenchymal cells as the stromal cell component of the tumour 
micro-environment had a significant effect upon enhancing chemotherapy drug 
resistance in oesophageal cancer, and could prove a useful target for future drug 
development.

INTRODUCTION

There are over 8,000 new diagnoses of oesophageal 
cancer per year in the UK and near 500,000 worldwide. 
[1] Mortality remains high, with a 5-year overall survival 
of only 13%. [1] In the UK and much of Europe, routine 
treatment for potentially curable patients is neo-adjuvant 
chemotherapy and resectional surgery followed by 
adjuvant chemotherapy. [2] However, the response 
rate to neo-adjuvant chemotherapy is only 40%, so 

over half of patients do not benefit whilst suffering 
toxic chemotherapy-related side-effects. [3] A model 
to understand the mechanisms of chemo-resistance in 
tumours and that can potentially predict which patients 
are most likely to benefit from chemotherapy would 
provide a marked clinical advantage and an opportunity 
for personalised treatment of oesophageal cancer. [4]

We have previously described a pre-clinical tumour 
model (3D tumour growth assay, 3D-TGA) that allows 
chemotherapeutic drug testing in a more accurate and 

mailto:anna.grabowska@nottingham.ac.uk


Oncotarget2www.impactjournals.com/oncotarget

clinically-relevant setting, using ‘close-to-patient’ cells 
isolated from patient-derived xenografts. [5] Incorporating 
extracellular matrix and mesenchymal support restores 
both direct and paracrine tumour-stroma interactions 
which are known to influence drug resistance. [6, 7]

Here, we have modified the 3D-TGA to allow it to 
be used for cells derived from small biopsies such as those 
taken endoscopically prior to chemotherapy treatment 
of oesophageal cancer. This would allow the evaluation 
of the chemo-naïve tumour within a clinically-relevant 
timescale of 3 weeks, whilst the patient is progressing 
through the histological diagnosis, multicomponent 
staging and cancer MDT pathway [8], before referral for 
consideration of neo-adjuvant chemotherapy. The assay 
is amenable to pharmacological testing in a 384-well 
format allowing numerous drugs and combinations to be 
tested simultaneously. The clinical validity was assessed 
by comparing the chemo-sensitivity measured in the 
3D-TGA with the actual clinical response, as measured by 
the Mandard tumour regression grade (TRG). [9] 

RESULTS

Close-to-patient oesophageal cancer cells can be 
established in vitro using a feeder layer culture 
system and grown in the 3D-TGA

79 chemotherapy-naïve tumour biopsy samples 
were obtained from the 70 patients recruited. A cohort 
of 30 patients and their tissue was used in the novel 
method development phase of the study and did not 
generate patient cancer cells. Using the feeder layer 
method, individual patient in vitro cancer cell cultures 
were established reliably in a subsequent group of 28/40 
patients (70%); with the other 12 patient’s tumour cultures 
excluded for technical reasons (see online Supplementary 
Figure S1). There was no apparent difference in 
oncological or demographic characteristics between those 
that did / did not establish (see online Supplementary 
Table S3).

Figure 1: Growth in the 3D-TGA. Tumour cells were seeded in 3D-TGA with and without hMSCs. Growth of close-to-patient cells 
was determined in 3D-TGA over the 7 day assay using the alamarBlue assay. A. Progressive growth of tumour cells was monitored in 6 
replicate wells immediately after establishment in 3D (day 0) and on days 3, 5 and 7. B., C. 3D cultures of live cells were imaged by wide-
field microscopy with DIC at day 0 B. and day 7 C.. Images are extended depth of field projection of multiple z-stacks taken of Oes5R. D. 
The day 7 mean peak values from the growth curves were plotted in pairs, demonstrating a small but significant increase in growth in the 
models that incorporate mesenchymal support. E., F. Cell clusters with mCherry-labelled hMSCs (purple) at day 7 were extracted to glass 
slides and stained with anti-TFF3-AlexaFluor488 (green) and counter-stained with DAPI (blue), and imaged by fluorescence microscopy 
at x20 E. and x40 F. magnification. 
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Table 1:  Patient demographics, tumour staging and treatment

Patient
ID

Demographics & Diagnosis Chemotherapy & Surgery Histopathology & Tumour Regression

G
ender

A
ge at diagnosis

Tum
our site

cTN
M

(all M
0)

C
ycles 

of 
N

eoA
 

EC
F

N
eoA

 
dose 

reduction

N
eoA

 cycle delay

N
eoA

 
com

plication

Procedure

pTN
M

 
(all M

0)

Positive 
/ 

R
esected N

odes

Involved m
argins

Stage

TR
G

Oes1 M 77 Lower third T3 N0 3 no nil none ILO T0 N0 0/12 no 0 1

Oes2 M 55 Lower third T3 N2 3 no nil none ILO T3 N1 2/30 no IIIA 3

Oes3 M 45 GOJ T3 N0 3 no nil none ILO T4a N1 1/23 no IIIC 3

Oes4 F 53 GOJ T3 N2 3 no nil none ILO T4a N0 0/7 CRM+ IIIA 4

Oes5 M 58 GOJ T3 N2 3 no nil none ILO T3 N3 8/18 CRM+ IIIC 4

Oes6 M 72 GOJ T3 N2 3 no 1 week Diarrhoea, N+V, 
fatigue ILO T3 N0 0/16 CRM+ IIB 4

Oes7 M 75 Lower third T3 N1 3 no 2 week AKI, mucositis ILO T3 N0 0/22 no IIB 5

Oes8 M 62 Lower third T3 N1 3 no nil
Neutropenia, 
N+V (during 3rd 
cycle)

ILO T3 N2 4/17 CRM+ IIIB 5

Oes9 M 67 GOJ T3 N0 3 no nil PPE ILO T3 N3 12/18 CRM+ IIIC 4

Footnote:  Abbreviations: GOJ: gastro-oesophageal-junction, cTNM: clinical Tumour, Node & Metastasis at initial staging, 
NeoA: Neoadjuvant chemotherapy, ECF: Epirubicin, Cisplatin, 5-FU, N+V: nausea & vomiting, AKI: acute kidney injury, 
PPE: Palmar-Plantar Erythrodysesthesia, ILO: Ivor-Lewis Oesophagectomy, pTNM; pathological TNM histologically at 
resection, CRM+: circumferential resection margin positive, TRG: Mandard tumour regression grade.

Table 2: Characteristics of each patient, and corresponding close-to-patient cells, pre & post chemotherapy
IHC Tissue Patient Close-to-patient cells

Study ID TRG Cyto EpCam CD44 ALDH p53 TFF3 Cyto EpCam CD44 ALDH p53 TFF3
Oes1B 1 + + - + + + + + - + + -
Oes2B 3 + + - - + + + + - - + -
Oes3B 3 + + - + + + + + - + + -
Oes4B 4 + + + + + + + + + + + -
Oes4R 4 + + + + + + + + + + + -
Oes5B(i) 4 + + + + + + + + + + + -
Oes5B(ii) 4 + + + + + + + + + + + -
Oes5R 4 + + + - + + + + + - + -
Oes6B(i) 4 + + - + + + + + - + + -
Oes6B(ii) 4 + + + + + + + + + + + -
Oes6R 5 + + + - + + + + + - + -
Oes7B(i) 5 + + + + + + + + + + + -
Oes7B(ii) 5 + + + + + + + + + + + -
Oes7R 5 + + + + + + + + + + + -
Oes8B 5 + + - - + + + + - - + -
Oes8R 5 + + + + + + + + + + + -
Oes9B 4 + + - + + + + + + - + -

Footnote: Abbreviations: B: chemo-naïve biopsy sample, R: chemo-exposed resection sample, (i): first biopsy (ii): second 
biopsy, cyto: cytokeratin.
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Clinical inclusion criteria (oesophageal 
adenocarcinoma; completion of 3 full-dose cycles of 
ECF neoadjuvant chemotherapy; definitive surgery 
and TRG assigned) were necessary to ensure accurate 
correlation between the clinical chemo-sensitivity in 
patients as measured by TRG, and in vitro chemo-
sensitivity as assessed by the 3D-TGA. Patient reasons 
(e.g. advanced disease requiring palliation) and 
oncological causes (e.g. non-completion of chemotherapy) 
requiring study exclusion, resulted in a final group of 12 
samples from nine patients who underwent the detailed 
chemotherapeutic analysis in this study (see online 
Supplementary Figure S1). Five of these nine patients 
had a matched, chemotherapy-exposed resected tumour 
established in vitro which also underwent chemo-
sensitivity analysis. The baseline demographic, surgical 
and oncological details for these nine patients with 
samples established from chemotherapy-naïve biopsies 
who met these inclusion criteria were recorded (Table 1), 
have a similar distribution of grade and aggressiveness, 
and are comparable to a standard clinical cohort presenting 
with disease amenable to neoadjuvant chemotherapy and 
surgery with curative intent. [10] 

Mean age on presentation was 63 years, with a 
male predominance 89% (n = 8) and similar cTNMs 
of T3 N0-2 within the group, and stages IIB to IIIC. 
The proportion (33%, n = 3) of chemotherapy sensitive 
tumours (TRG 1-3), was broadly comparable to that seen 
in clinical practice (40%). [10] There was no significant 
difference between the mean time (26 and 21 days for the 
TRG 1-3 and TRG 4-5 cancers respectively) to develop 
each patient tumour into an established in vitro patient 
cancer cell culture of sufficient volume for laboratory 
experimentation ( > 1 x107 cells). When grown in the 
3D-TGA each individual close-to-patient cell culture 
grew in reproducible fashion (Figure 1A), with some 
variation in growth rate between the different patient 
lines, and developed into multicellular cancer cell clusters 
(Figure 1B, 1C). The growth of the hMSCs was minimal 
compared to the cancer cells (see online Supplementary 
Figure S2), so did not affect overall growth measurement 
by alamarBlue. In co-culture, the cancer cell clusters 
displayed a small but significant increase in growth (p < 
0.05) compared to those without mesenchymal support 
(Figure 1D). 

Cultured patient cancer cell phenotype mirrors 
primary tumour tissue

The phenotype of the close-to-patient cancer cells 
was compared with the corresponding primary patient 
cancer by IHC (Figure 2 and Table 2). Like the primary 
patient tissues, all were Cytokeratin, EpCam and p53 
positive, confirming respectively the epithelial nature of 
the cells; their derivation from transformed metaplastic 

columnar-type epithelium (rather than adjacent normal 
squamous oesophageal epithelium); and neoplastic 
phenotype, as oesophageal p53 staining is not found in 
non-dysplastic Barrett’s Oesophagus. [11, 12] Trefoil 
Factor 3 (TFF3) is involved in protection, maintenance 
and repair of the intestinal mucosa, [13] specific for 
cells with an intestinal phenotype, [14] and is a reliable 
marker of metaplastic change in the oesophagus. [15] It 
was present in all of the primary patient cancer tissue, but 
absent in the feeder layer culture of the close-to-patient 
cancer cells, however expression was restored in both the 
3D-TGA with mesenchymal support (Figure 1E, 1F) and 
xenografts (Figure 2). The potential oesophageal cancer 
stem cell (CSC) markers CD44 [16, 17] and ALDH [18, 
19] were present in 11/17 (64.7%) and 13/17 (76.5%) of 
the samples respectively, and both were present in 9/17 
(52.9%) of the samples (Table 2). Expression in the 
primary patient tumour was reflected in the corresponding 
close-to-patient cells and xenografts (Figure 2), suggesting 
maintenance of cells with a CSC-like phenotype in culture. 
Although numbers are small, the presence of ALDH and 
CD44 (either individually or together) did not relate to 
stage of disease, pre- or post-chemotherapy tissue status, 
the TRG, or in vitro growth. 

The 3D-TGA using close-to-patient cells with 
mesenchymal cell co-culture accurately models 
clinical chemo-sensitivity

When the 3D-TGA was used to assess chemo-
sensitivity, dose-dependent responses were observed 
(Figure 3A) with IC50s that varied between different 
patients, and sensitivity to chemotherapy agents was 
reduced when mesenchymal cells were incorporated 
into the assay (Figure 3B), with these effects being more 
pronounced when doublet and then triplet chemotherapy 
was administered (see online Supplementary Figure S3). 
To investigate whether this finding reflected the clinical 
chemotherapy response, correlation between the IC50s of 
the individual patient cells grown in the 3D-TGA were 
determined, in the presence or absence of mesenchymal 
cells, with the patient’s TRG (Figure 3C). When 
mesenchymal support was present, 100% (n = 14) of the 
TRG 4-5 cancers had IC50s higher than the mean peak 
serum threshold, and 100% (n = 3) of the TRG 1-3 cancers 
had IC50s lower than the mean peak serum threshold 
(Figure 4). Without mesenchymal cells incorporated in 
the 3D-TGA model, the assay had no predictive value: 
although all of the TRG 1-3 cancer IC50s remained lower 
than the mean peak serum, only 18% (n = 3) of the TRG 
4-5 cancers had IC50s higher than the mean peak serum 
threshold. 
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Drug efficacy increases in combination

By examining each drug individually, and their 
combinations in the 3D-TGA, it is possible to put 
together a more comprehensive picture of their efficacy, 
including their individual contribution to the overall effect 
of the ECF regimen (Figure 4). Individual drugs at the 
concentrations delivered to patients were never effective; 
the best drug doublet was Cisplatin/5-Fluorouracil, and 
further addition of Epirubicin provided an overall marginal 
gain, with a mean IC50 1.4-fold lower for the ECF triplet 
than the CF doublet (p < 0.05) (Figure 5A).

Chemo-sensitivity was unchanged pre and post 
neo-adjuvant chemotherapy

Matched patient samples obtained pre- (chemo-
naïve) and post- (chemo-exposed) neoadjuvant 
chemotherapy were all from patients (n = 5) with TRG 4-5 

cancers, with remnant tumour bulk at surgical resection. 
Analysis showed no significant difference in IC50 chemo-
sensitivity in the 3D-TGA, before or after neo-adjuvant 
chemotherapy, whether they were grown with or without 
mesenchymal support (Figure 5B).

The novel HDACi Panobinostat provides 
enhanced chemo-sensitivity

Panobinostat was efficacious as a single agent, 
and while growth with mesenchymal support increased 
resistance by 1.3-fold (p < 0.05), IC50s remained within 
achievable serum concentrations and were thus still 
classified as sensitive (see online Supplementary Figure 
S4). When Panobinostat was combined with the SOC 
triplet ECF chemotherapy, it resulted in a significantly 
enhanced efficacy (p < 0.05) (Figure 5C). Of the 5 patients 
(12 samples) that were ECF-resistant, only 2 samples 
remained resistant when subjected to ECF + Panobinostat 
in combination (Figure 4). 

Figure 2: Histology. IHC analysis of A. pre-chemotherapy biopsy and B. matched post-chemotherapy tumour tissue, and their 
subsequently generated close-to-patient cells and xenograft model, all from patient Oes7. FFPE sections were stained with antibodies 
against Cytokeratin, EpCam, CD44, ALDH, P53 and TFF3, using standard IHC techniques and visualised with Leica DMLB bright-field 
microscope at x10 magnification.
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Figure 4: Panel of Response to Chemotherapy Agents. Each individual patient’s cancer cells were grown in the 3D-TGA with 
(+) or without (-) the presence of hMSCs, and then underwent pharmacological assessment, to obtain individual patient 3D-TGA IC50s, for 
mono and combination chemotherapy. The patient cancer cell clusters were classified as sensitive (green), borderline (orange), or resistant 
(red) by comparison of IC50 values to mean peak serum concentrations achieved in patients at the doses used in UK clinical practice. 

Figure 3: Chemotherapeutic sensitivity profiles. Chemo-sensitivity of close-to-patient cancer cell clusters was determined in 
3D-TGA, after 4 day exposure to drug combinations at a range of concentrations, using the alamarBlue assay to measure viability. Viability 
curves were generated and IC50 values calculated using GraphPad Prism. A. Viability curve for Cisplatin monotherapy. Error bars represent 
one standard deviation. The horizontal broken line indicates the IC50, and the vertical line represents the mean Cisplatin peak serum 
concentration in patients (4.3 µM). B. Sensitivity to ECF in the presence and absence of hMSCs. Horizontal lines represent mean IC50s for 
each group. C. Predicted chemo-sensitivity based on 3D-TGA IC50 measurement of ECF treatment is compared with the clinical response 
as reported by the TRG. The 3D-TGA IC50 data points, above the mean peak serum delivered to patients, are designated as resistant to 
chemotherapy. Data points that lie within 10% of the mean peak serum are defined as borderline. 

Figure 5: Chemotherapeutic Drug Combinations. Chemo-sensitivity of close-to-patient cancer cell clusters was determined in 
3D-TGA, to drug combinations at a range of concentrations, using the alamarBlue assay to measure viability. IC50 values from viability 
curves were calculated using GraphPad Prism. A. Sensitivity to Cisplatin/5-FU doublet compared to ECF triplet in the presence of hMSCs. 
B. Sensitivity to ECF chemotherapy pre- and post-neoadjuvant chemotherapy, in 3D-TGA models with or without hMSCs. C. Sensitivity to 
ECF chemotherapy compared to ECF in combination with Panobinostat, in the presence of hMSCs. Horizontal lines represent mean IC50s.



Oncotarget7www.impactjournals.com/oncotarget

DISCUSSION

We have developed a novel method of establishing 
cancer cells from small biopsies of individual patient 
oesophageal cancers, and then assessing growth in a 
tumour micro-environment (TME) -relevant 3D assay 
which enables direct chemo-sensitivity testing and 
screening of novel drugs. Mesenchymal co-culture had 
a significant effect; enhancing growth and chemotherapy 
drug resistance in the 3D model, resulting in accurate 
prediction of chemo-sensitivity for individual patients. 

We present here the first published evidence of 
a reliable technique to establish individual close-to-
patient OAC cells and grow them in a TME-relevant 
assay, without having to artificially induce immortality 
(e.g. using a telomerase approach [20, 21]). Although 
requiring careful attention to detail, the method does 
not require specialised equipment or materials found 
outside of a normal tissue culture laboratory, and could 
be scaled to high-throughput processing, [7] to screen for 
novel chemotherapeutics effective against this commonly 
resistant carcinoma. This is a significant step forward 
towards the goal of delivering personalised health care and 
personalised oncological therapy in particular. As well as 
their use for studying chemo-resistance, there are many 
other promising applications for 3D culture including 
the study of the cell biology of individual cancers, their 
similarities, cellular interactions and the relationship to the 
phenotypical heterogeneity of the disease as a whole. 

The characteristics of the established lines 
matched those of the original patient tissues well, and 
interestingly, in the case of TFF3 (a functional protein 
secreted from the apical membrane of established mucosa 
[22]) demonstrated the requirement for a representative 
3D setting. The selective expression of TFF3 in a 3D 
TME with mesenchymal support (either in vivo or ex 
vivo) would suggest that a resumption of apical-basal 
polarisation, cell-cell interactions and environmental cues 
(which are absent in monolayer culture) are required for 
these close-to-patient cells to return to functional status. 
This reinforces the importance of representative 3D 
culture, as has been shown in other tissue types, [23] for 
the production of relevant assay results. 

The increased chemo-resistance in the presence of 
mesenchymal cells in the 3D-TGA underlines the overall 
importance of the stromal component of the TME, and 
paracrine interaction between the tumour epithelial cells 
and their support cells, and the importance of including 
them in both in vitro and in vivo assays for pre-clinical 
drug screening. This study and previous work published by 
our group [5] shows that the role of the stromal component 
of the TME in influencing the chemo-resistance is both 
drug- and individual tumour-dependent. This variation is a 
more accurate reflection of the diverse clinical outcomes to 
chemotherapy treatment, where OAC patients individually 

display variable magnitudes of response to individual 
drugs and the SOC therapy. [10] 

The 3D assay using close-to-patient cancer cells 
co-cultured with mesenchymal cells provides a clinically-
relevant assessment of patient sensitivity to the ECF 
chemotherapeutic agents, accurately predicting individual 
clinical chemo-therapeutic response with a sensitivity and 
specificity of 100%. Although numbers are small, this is 
a particularly exciting finding, as attempts to correlate 
laboratory chemo-therapeutic outcomes to individual 
patient clinical response and provide personalised 
chemotherapy have previously been unsuccessful. [24, 25] 
Corresponding survival data would be helpful for clinical 
application, but has not been reported as it is immature and 
remains difficult to interpret for a group of this size.

Using standard chemotherapy agents alone, the 
drug triplet of ECF was the most effective regimen 
evaluated in the 3D-TGA, closely followed by the 
Cisplatin/Fluorouracil (5-FU) doublet, which reflects 
the apparent increased efficacy of the peri-operative 
ECF triplet over the pre-operative Cisplatin/5-FU 
doublet observed in clinical practice. [26] However in 
a head-to-head clinical evaluation, the marginal gain in 
chemotherapy-efficacy seen from addition of Epirubicin 
to Cisplatin/5-FU (improved TRG, progression & disease 
free survival, but not overall survival) is offset by both a 
significant increase in the toxic side-effects from receiving 
triplet chemotherapy, and a reduced number of patients 
completing chemotherapy cycles. [27] This oesophageal 
3D-TGA, therefore, has a key role to play: for example, in 
this study the 3D-TGA results suggest that patients Oes1 
and Oes3 may not require the addition of Epirubicin to 
the Cisplatin/5-FU doublet to achieve sensitivity, whilst 
patient Oes2 may require triplet ECF chemotherapy to 
accomplish chemo-sensitivity (Figure 4). The oesophageal 
3D-TGA not only allows identification of patients who 
will potentially not benefit from the SOC chemotherapy, 
but those that may benefit from a tailored chemotherapy 
regimen, with reduced exposure to unnecessary or 
ineffective drugs and their associated side-effects.

The absence of change in chemo-sensitivity 
between chemo-naïve and matched chemo-exposed 
patient samples was initially surprising, since the 
neoadjuvant chemotherapy might be expected to select 
for increased chemo-resistant clones. However, the pre- 
and post-treatment samples tested were all from patients 
in which the primary tumours were graded TRG 4-5 and 
therefore already chemo-resistant. The 3D-TGA result 
is thus reflective of the clinical observation that patients 
who do not respond to neoadjuvant chemotherapy (with 
a TRG of 4-5) do not have improved survival outcomes 
with further rounds of the same chemotherapy post-
operatively. [10] Although there was no material change 
in chemo-sensitivity, three of the five patients who had 
samples obtained pre- and post-chemotherapy (including 
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one patient with 2 biopsy samples taken) had mismatched 
CD44/ ALDH expression pre- and post-chemotherapy. 
This could be influenced by clonal selection following 
exposure to neoadjuvant chemotherapy, and may also be 
indicative of the time interval and spatial heterogeneity 
within the tumour tissue itself. 

The 3D-TGA can also be used to assess novel drugs, 
alone or in combination with SOC, across a panel of 
individual patient cancer cells, for potential translation into 
clinical practice. Panobinostat is a novel HDACi which 
has recently undergone accelerated FDA approval for use 
in myeloma [28]. It is also in multiple phase II and phase 
III trials currently, as it has a broad spectrum of action 
against common cancers, [29] at a lower dose than the 
other current FDA/EMA-approved HDACi. [30] We tested 
Panobinostat in the oesophageal 3D-TGA, as it has been 
shown to be effective in a range of solid tumours [29], 
and in combination with ECF because it has been shown 
to potentiate the action of anthracyclines (e.g Epirubicin), 
[31] which are part of the current SOC therapy. The 
strikingly improved efficacy against oesophageal tumours 
in our 3D-TGA, shown by combining Panobinostat with 
the SOC treatment is an exciting prospect. It converted 
50% of the previously chemotherapy resistant patient 
tumour samples into chemo-sensitive responders, 
suggesting that a future clinical regimen with a HDACi 
such as Panobinostat, may provide an avenue for more 
successful global treatment of this frequently chemo-
resistant tumour type.

Despite the overwhelming evidence that in vitro 3D 
tumour cell cultures more accurately reflect the complex 
in vivo TME than simple two-dimensional cell monolayers 
(with respect to gene expression profiles, signalling 
pathway activity and drug sensitivity [32]), there is still 
a need for further development and refinement to achieve 
more accurate 3D cell models of disease, for more 
clinically-relevant drug screening and in particular using 
close-to-patient tumour cells and incorporating supporting 
stromal cells. [33] Using close-to-patient cells is important 
as it has been shown that the multi-drug resistance 
transcriptome of cancer cell-lines, bear more resemblance 
to each other, regardless of the tissue of origin, than to the 
clinical tumour samples that they are meant to represent. 
[34] Organotypic modelling, [35, 36] xenografts, [37, 38] 
and spheroid culture [16, 39] have all been attempted to 
study oesophageal cancer in a more relevant setting, and 
in some cases using cancer cells taken directly from the 
patient. [40, 41] The organoid culture system has also 
shown much promise for modelling the stem cell niche, 
particularly in colorectal cancer. [42] However, we have 
demonstrated the importance of including human stromal 
mesenchymal cells in the context of studying drug 
sensitivity, and this is frequently missing in cancer models 
used for drug discovery. [43] 

Although mesenchymal cell induced cancer 
progression and chemo-resistance has been previously 

reliably described in both different environments and 
tumour types, there is a lack of conclusive evidence 
about the chief mechanisms by which stromal cells 
(such as mesenchymal and cancer associated fibroblast 
(CAF) cells) induce these effects [44]. Stroma-cancer 
cell interactions can be broadly considered as direct 
cell contact [45-48], secreted signalling factors [49-51], 
or hypoxia-driven [52, 53]. Clearly although MSCs are 
potent mediators of resistance to chemotherapy, the key 
factors and mechanisms in the tumour microenvironment 
(including in OAC), have yet to be fully identified. This 
maybe because the cross-talk between stromal cells and 
cancer cells is complex and context-dependent, may differ 
between micro-environments and cancer types, and be 
adaptive in response to the selection pressure applied by 
chemotherapeutics [54].

We believe that the 3D-TGA model described here-
in, using close-to-patient epithelial tissue, a humanised 
TME, biologically-active 3D matrix and mesenchymal 
stromal support cells, reproduces some of the key micro-
environmental components of the human tumour. Other 
cell types (for example, cells of the immune system and 
vascular endothelial cells) may also provide important 
signals in the case of some individual tumours, so further 
refinement will be required to model other influences 
on drug sensitivity or oesophageal tumour biology. 
However, the correlation between the in vitro 3D-TGA 
assessment of chemo-sensitivity and the observed clinical 
response described here, demonstrates that in its current 
format, it is already a useful tool. To demonstrate its 
clinical applicability for providing tailored treatment for 
individual patients, our findings will require confirmation 
in an expanded cohort. However, in its current format, 
this novel method of expanding individual patient 
oesophageal cancer cells in the laboratory and using them 
for drug screening, has potential for both reducing the 
use of animals in the early stages of drug development 
(due to availability of a more clinically-relevant in vitro 
assay), and has potential to have a significant impact on 
clinical outcomes by enabling accurate identification of 
new treatments, in a more cost-effective manner, including 
those targeting the stroma.

MATERIALS AND METHODS

Ethics statement

Investigation has been conducted in accordance with 
the ethical standards and according to the Declaration of 
Helsinki and according to national and international 
guidelines and has been approved by the authors’ 
institutional review board.
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Establishing close-to-patient cells using a feeder 
layer method

Endoscopic tumour biopsies (REC: 10/H0401/80) 
and fresh surgical specimens (REC: 10/H0405/6) were 
collected with informed consent from patients at the 
Nottingham University Hospitals NHS Trust in 2014-
2015, and used in accordance with National Research 
Ethics Service approval. Chemo-naïve tumour biopsies 
were taken from patients (Oes1B, Oes2B etc) undergoing 
standard oesophageal cancer endoscopic staging 
examinations, either at oesophagogastroduodenoscopy 
or at endoscopic ultra-sound, or both; resulting in two 
chemo-naïve samples from the same patient (designated 
for example as Oes5B(i) for first biopsy, Oes5B(ii) for 
second biopsy). If disease stage allowed treatment with 
curative intent, patients subsequently underwent routine 
neo-adjuvant chemotherapy (3 cycles of anthracycline, 
platinum and fluoropyrimidine) before definitive surgical 
resection of their oesophageal tumour. A matching 
chemotherapy-exposed tumour specimen was collected 
at surgical resection where possible (designated as Oes 
R). All resected tumours were examined by a dedicated 
team of Consultant Gastrointestinal Histopathologists, and 
allocated a TRG from 1-5, as described by Mandard (see 
online supplementary table S1). This histopathological 
grading of chemotherapy response in oesophageal 
cancer, (where TRG 1-3 cancers are considered chemo-
sensitive and TRG 4-5 chemo-resistant) directly relates to 
prognosis. [3, 55]

The tissue specimens were transferred from 
the hospital to the laboratory, and then processed and 
disaggregated to produce a cellular suspension (see 
online supplementary method S1). In vitro tumour cell 
growth was then established and expanded with a layer 
of supporting feeder cells according to the method 
of Liu et al. [56] From this early passage material, the 
tumour epithelial cells were expanded and harvested 
separately from the cancer associated fibroblasts using 
differential trypsinisation. Tumour cell number and 
viability was determined using trypan blue exclusion 
and analysed by flow cytometry for expression of the 
epithelial marker, EpCam (see online supplementary 
method S2). At less than passage 5, cell aliquots were 
cryopreserved, utilised for the 3D-TGA, xenografted to 
study tumourigenicity (see online supplementary method 
S3), and formalin fixed before being embedded in agarose 
for immunohistochemical analysis.

Study inclusion criteria

Tumour biopsies were collected from patients 
early in their diagnostic and staging pathway, however 
due to subsequent staging with advanced disease, 
poor performance status preventing chemotherapy, or 

intolerance of the chemotherapy regimen, two-thirds 
of these patients did not undergo the full curative 
therapy regimen, and therefore did not have a clinical 
chemotherapy response to compare with the ex vivo result. 
The following inclusion criteria for pharmacological 
assessment in the 3D-TGA were required to ensure that 
the study population was undergoing comparable curative 
treatment: a) adenocarcinomas of the lower oesophagus 
or gastro-oesophageal junction (GOJ); b) completed all 
3 cycles of neo-adjuvant chemotherapy, without dose 
reductions; c) underwent definitive surgery and were 
assigned a TRG; d) an in vitro patient line was established 
for the paired chemo-exposed tumour (where tissue was 
available).

3D-tumour growth assay

The individual patient’s epithelial cells, were 
co-cultured in the 3D-TGA with or without human 
mesenchymal stem cells (hMSC) in a modified Cultrex® 
basement membrane extract (BME) (Trevigen, MD, USA), 
using serum-free conditions, with a human tissue reflective 
pH and glucose (see online supplementary method S4), as 
previously reported. [5] Cellular metabolism and growth 
was assessed with an alamarBlue® cell fluorescence 
assay (ThermoFisher Scientific, Loughborough, UK) and 
measured on a fluorescent plate reader (excitation 560 nm, 
emission 588 nm, Flex Station II, Molecular Devices).To 
enable separate assessment of the co-cultured cells within 
the 3D-TGA, hMSCs constitutively expressing the red 
fluorescent protein mCherry were generated (see online 
supplementary method S5). The mCherry-labelled hMSC 
component of the 3D-TGA was measured separately by 
the fluorescent plate reader (excitation 553 nm, emission 
613 nm).

Pharmacological assessment

The standard chemotherapy regimen used for 
oesophageal adenocarcinoma (OAC) in the UK and 
administered to the patients in this study, is Epirubicin, 
Cisplatin and 5-Fluorouracil/Capecitabine (ECF) pre- and 
post-operatively, [2] and so this regimen was replicated 
in the 3D-TGA (see online supplementary table S2). 
The novel histone deacetylase inhibitor (HDACi) drug, 
Panobinostat, was also assessed to evaluate the 3D-TGA 
as a potential platform for appraisal of new drugs, with 
assessment of new drug efficacy and in combination with 
the current ECF standard-of-care (SOC), for potential 
translation into clinical practice. Following the addition 
of drugs to the cancer cell clusters in the 3D-TGA, the 
chemo-toxic effect was calculated as a percentage of the 
matched untreated control. IC50 curves were generated 
for the drugs both individually and in combination, as 
previously described by our group, [5] using the Chou-
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Talalay method. [57] The mean peak serum concentration 
achieved in patients for each drug (Epirubicin 4.5 µM, 
Cisplatin 4.3 µM, 5-Fluorouracil & Capecitabine 4.6 µM; 
see online supplementary table S2) was compared with 
the IC50 values, and chemo-response was thus defined as 
sensitive, borderline (+/- 10% of the mean peak serum), 
or resistant.

Imaging and staining of the 3D-TGA

Serial bright-field and immunofluorescent images 
of the co-cultured mCherry-labelled hMSCs and cancer 
cell clusters were obtained at day 0, 3 and 7, using 
a Nikon Eclipse Ti-E microscope with differential 
interference contrast (DIC). Forty z-stacks were taken 
throughout the depth of the well, and extended depth of 
field projection picture was produced using the Nikon 
NIS Elements software, allowing a condensed view of 
the three-dimensional profile of the cancer cell clusters. 
On day 7, cell clusters from the 3D-TGA were extracted 
using the standard method, [58] and immuno-stained as 
previously reported, [5] with Trefoil Factor 3 (TFF3, 
Abcam), AlexFluor488 (ThermoFisher Scientific) and 
mounted in Prolog Gold Anti-fade containing DAPI 
(ThermoFisher Scientific). Immunofluorescent images of 
the stained clusters were obtained with the Nikon Eclipse 
Ti-E microscope and NIS Elements Advanced Research 
Software. 

Immunohistochemistry characterisation

Tumour tissue and the agarose-embedded close-
to-patient cancer cells were formalin fixed and paraffin 
embedded (FFPE) before 4 μm sections were cut for 
both H&E and immunohistochemistry (IHC) analysis. 
IHC was performed using standard techniques and 
in line with the manufacturer’s instructions for the 
following primary antibodies: Cytokeratin (MNF116, 
DAKO), EpCam (Ber-EP4, DAKO), CD44 (DF1485, 
DAKO), p53 (DO-7, DAKO), Vimentin (V9, DAKO), 
TFF3 (Abcam), and ALDH1A1 (EP1933Y, Abcam) (see 
online supplementary method S6). Sections were viewed 
with a Leica DMLB Bright-field Microscope (Leica-
microsystems, Milton Keynes, UK) and images acquired 
with Leica QWin Standard v3 software. The presence of 
any characteristically stained cells was considered positive 
with respect to negative controls, and confirmed by a 
second blinded individual. 

Statistical analysis

Two-way ANOVA was performed to compare the 
different parameters among the different groups when 
assessing the relative efficacy of the drug combinations. 

The t-test was used to calculate the significance of 
difference between paired groups, and Mann-Whitney 
U test between independent groups, with a significance 
level of p < 0.05. Statistics were computed with GraphPad 
Prism 5 Software (San Diego, CA, USA) and plotted with 
mean values, and error bars for standard deviation.
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