1,170 research outputs found
Detecting clinically meaningful biomarkers with repeated measurements in an Electronic Health Record
Electronic health record (EHR) data are becoming an increasingly common data
source for understanding clinical risk of acute events. While their
longitudinal nature presents opportunities to observe changing risk over time,
these analyses are complicated by the sparse and irregular measurements of many
of the clinical metrics making typical statistical methods unsuitable for these
data. In this paper, we present an analytic procedure to both sample from an
EHR and analyze the data to detect clinically meaningful markers of acute
myocardial infarction (MI). Using an EHR from a large national dialysis
organization we abstracted the records of 64,318 individuals and identified
5,314 people that had an MI during the study period. We describe a nested
case-control design to sample appropriate controls and an analytic approach
using regression splines. Fitting a mixed-model with truncated power splines we
perform a series of goodness-of-fit tests to determine whether any of 11
regularly collected laboratory markers are useful clinical predictors. We test
the clinical utility of each marker using an independent test set. The results
suggest that EHR data can be easily used to detect markers of clinically acute
events. Special software or analytic tools are not needed, even with irregular
EHR data.Comment: 23 pages, 3 figure
Genetically determined height and coronary artery disease.
BACKGROUND: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.)
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Menopause accelerates biological aging
Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Recommended from our members
Leveraging population admixture to characterize the heritability of complex traits.
Despite recent progress on estimating the heritability explained by genotyped SNPs (h(2)g), a large gap between h(2)g and estimates of total narrow-sense heritability (h(2)) remains. Explanations for this gap include rare variants or upward bias in family-based estimates of h(2) due to shared environment or epistasis. We estimate h(2) from unrelated individuals in admixed populations by first estimating the heritability explained by local ancestry (h(2)γ). We show that h(2)γ = 2FSTCθ(1 - θ)h(2), where FSTC measures frequency differences between populations at causal loci and θ is the genome-wide ancestry proportion. Our approach is not susceptible to biases caused by epistasis or shared environment. We applied this approach to the analysis of 13 phenotypes in 21,497 African-American individuals from 3 cohorts. For height and body mass index (BMI), we obtained h(2) estimates of 0.55 ± 0.09 and 0.23 ± 0.06, respectively, which are larger than estimates of h(2)g in these and other data but smaller than family-based estimates of h(2)
No evidence for cardiac dysfunction in Kif6 mutant mice.
A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction.
No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on
cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial
echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid
or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more
complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function
Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease
The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions
Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene
Journal ArticleDecreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol- stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity
Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes
Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits
- …
