25 research outputs found

    Development of polymeric nanocomposite (Xyloglucan-co-Methacrylic acid/Hydroxyapatite/SiO 2 ) scaffold for bone tissue engineering applications—In-vitro antibacterial, cytotoxicity and cell culture evaluation

    Get PDF
    Advancement and innovation in bone regeneration, specifically polymeric composite scaffolds, are of high significance for the treatment of bone defects. Xyloglucan (XG) is a polysaccharide biopolymer having a wide variety of regenerative tissue therapeutic applications due to its biocompatibility, in-vitro degradation and cytocompatibility. Current research is focused on the fabrication of polymeric bioactive scaffolds by freeze drying method for nanocomposite materials. The nanocomposite materials have been synthesized from free radical polymerization using n-SiO2 and n-HAp XG and Methacrylic acid (MAAc). Functional group analysis, crystallinity and surface morphology were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) techniques, respectively. These bioactive polymeric scaffolds presented interconnected and well-organized porous morphology, controlled precisely by substantial ratios of n-SiO2. The swelling analysis was also performed in different media at varying temperatures (27, 37 and 47 °C) and the mechanical behavior of the dried scaffolds is also investigated. Antibacterial activities of these scaffolds were conducted against pathogenic gram-positive and gram-negative bacteria. Besides, the biological behavior of these scaffolds was evaluated by the Neutral Red dye assay against the MC3T3-E1 cell line. The scaffolds showed interesting properties for bone tissue engineering, including porosity with substantial mechanical strength, biodegradability, biocompatibility and cytocompatibility behavior. The reported polymeric bioactive scaffolds can be aspirant biomaterials for bone tissue engineering to regenerate defecated bone

    Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review

    No full text
    Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents
    corecore