815 research outputs found

    The Thermal Stability of Mass-Loaded Flows

    Full text link
    We present a linear stability analysis of a flow undergoing conductively-driven mass-loading from embedded clouds. We find that mass-loading damps isobaric and isentropic perturbations, and in this regard is similar to the effect of thermal conduction, but is much more pronounced where many embedded clumps exist. The stabilizing influence of mass-loading is wavelength independent against isobaric (condensing) perturbations, but wavelength dependent against isentropic (wave-like) perturbations. We derive equations for the degree of mass-loading needed to stabilize such perturbations. We have also made 1D numerical simulations of a mass-loaded radiative shock and demonstrated the damping of the overstability when mass-loading is rapid enough.Comment: 4 pages, 1 figure, to be published in A&

    A resolution record for cryoEM

    Get PDF
    Cryo electron microscopy (cryoEM) is a fast-growing technique for structure determination. Two recent papers report the first atomic resolution structure of a protein obtained by averaging images of frozen-hydrated biomolecules. They both describe maps of symmetric apoferritin assemblies, a common test specimen, in unprecedented detail. New instrument improvements, different in the two studies, have contributed better images, and image analysis can extract structural information sufficient to resolve individual atomic positions. While true atomic resolution maps will not be routine for most proteins, the studies suggest structures determined by cryoEM will continue to improve, increasing their impact on biology and medicine

    An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas

    Full text link
    An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.Comment: 13 pages, 4 figure

    Dust in Interstellar Clouds, Evolved Stars and Supernovae

    Full text link
    Outflows of pre-main-sequence stars drive shocks into molecular material within 0.01 - 1 pc of the young stars. The shock-heated gas emits infrared, millimeter and submillimeter lines of many species including. Dust grains are important charge carriers and play a large role in coupling the magnetic field and flow of neutral gas. Some effects of the dust on the dynamics of oblique shocks began to emerge in the 1990s. However, detailed models of these shocks are required for the calculation of the grain sputtering contribution to gas phase abundances of species producing observed emissions. We are developing such models. Some of the molecular species introduced into the gas phase by sputtering in shocks or by thermally driven desorption in hot cores form on grain surfaces. Recently laboratory studies have begun to contribute to the understanding of surface reactions and thermally driven desorption important for the chemistry of star forming clouds. Dusty plasmas are prevalent in many evolved stars just as well as in star forming regions. Radiation pressure on dust plays a significant role in mass loss from some post-main-sequence stars. The mechanisms leading to the formation of carbonaceous dust in the stellar outflows are similar to those important for soot formation in flames. However, nucleation in oxygen-rich outflows is less well understood and remains a challenging research area. Dust is observed in supernova ejecta that have not passed through the reverse shocks that develop in the interaction of ejecta with ambient media. Dust is detected in high redshift galaxies that are sufficiently young that the only stars that could have produced the dust were so massive that they became supernovae. Consequently, the issue of the survival of dust in strong supernova shocks is of considerable interest.Comment: 4 pages, to be published in the proceedings of Fifth International Conference on Physics of Dusty Plasma

    An Electrocorticographic Brain Interface in an Individual with Tetraplegia

    Get PDF
    Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals

    Mass-loaded spherical accretion flows

    Get PDF
    We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    The Active Traveling Wave in the Cochlea

    Get PDF
    A sound stimulus entering the inner ear excites a deformation of the basilar membrane which travels along the cochlea towards the apex. It is well established that this wave-like disturbance is amplified by an active system. Recently, it has been proposed that the active system consists of a set of self-tuned critical oscillators which automatically operate at an oscillatory instability. Here, we show how the concepts of a traveling wave and of self-tuned critical oscillators can be combined to describe the nonlinear wave in the cochlea.Comment: 5 pages, 2 figure

    Englacial architecture and age-depth constraints across the West Antarctic Ice Sheet

    Get PDF
    he englacial stratigraphic architecture of internal reïŹ‚ection horizons (IRHs) as imaged by ice‐penetrating radar (IPR) across ice sheets reïŹ‚ects the cumulative effects of surface mass balance, basal melt, and ice ïŹ‚ow. IRHs, considered isochrones, have typically been traced in interior, slowâ€ïŹ‚owing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling. We further show where the oldest ice likely exists within the region and that Holocene ice‐dynamic changes were limited to the catchment's lower reaches. The traced IRHs from this study have clear potential to nucleate a wider continental‐scale IRH database for validating ice sheet models

    Coronary atherectomy: report of the first experience in Hawaii.

    Get PDF
    Since Andreas Gruentzig first introduced percutaneous transluminal coronary angioplasty (PTCA) in 1977, the ability to revascularize occluded coronary vessels with a catheter has enjoyed an explosive and unimaginable growth. As the equipment and operator experience improved, the possibilities appeared boundless. However, balloon angioplasty is hampered by a significant restenosis rate in the dilated vessel (approximately 30%), which is higher in selected locations (up to 60% in the proximal left anterior descending artery), even in the best of hands. This fundamental limitation may in part be due to the actual nature of the technique itself--stretching the vessel and fissuring the plaque causing remodeling without removal. The uneven, exposed vessel surface post-plaque rupture may contribute to activation of the hemostatic system, with acute thrombosis and release of various platelet and endothelial-derived growth factors, leading to long-term tissue proliferation and restenosis. Atherectomy, the mechanical removal of plaque from the vessel wall, appears to be an answer. This process actually debulks the culprit tissue and leaves behind a smoother, presumably less thrombogenic surface. We wish to report our first experience with a specific form of this technique in 4 consecutive patients, with a brief discussion of its promises and limitations
    • 

    corecore