Outflows of pre-main-sequence stars drive shocks into molecular material
within 0.01 - 1 pc of the young stars. The shock-heated gas emits infrared,
millimeter and submillimeter lines of many species including. Dust grains are
important charge carriers and play a large role in coupling the magnetic field
and flow of neutral gas. Some effects of the dust on the dynamics of oblique
shocks began to emerge in the 1990s. However, detailed models of these shocks
are required for the calculation of the grain sputtering contribution to gas
phase abundances of species producing observed emissions. We are developing
such models. Some of the molecular species introduced into the gas phase by
sputtering in shocks or by thermally driven desorption in hot cores form on
grain surfaces. Recently laboratory studies have begun to contribute to the
understanding of surface reactions and thermally driven desorption important
for the chemistry of star forming clouds. Dusty plasmas are prevalent in many
evolved stars just as well as in star forming regions. Radiation pressure on
dust plays a significant role in mass loss from some post-main-sequence stars.
The mechanisms leading to the formation of carbonaceous dust in the stellar
outflows are similar to those important for soot formation in flames. However,
nucleation in oxygen-rich outflows is less well understood and remains a
challenging research area. Dust is observed in supernova ejecta that have not
passed through the reverse shocks that develop in the interaction of ejecta
with ambient media. Dust is detected in high redshift galaxies that are
sufficiently young that the only stars that could have produced the dust were
so massive that they became supernovae. Consequently, the issue of the survival
of dust in strong supernova shocks is of considerable interest.Comment: 4 pages, to be published in the proceedings of Fifth International
Conference on Physics of Dusty Plasma