333 research outputs found

    Visualizing size-dependent deformation mechanism transition in Sn

    Get PDF
    Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from “smaller is stronger” to “smaller is much weaker”. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325

    Nitrous oxide and methane in a changing Arctic Ocean

    Get PDF
    Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region’s climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over the coming decades

    Transcriptomic Signatures in Sepsis and a Differential Response to Steroids. From the VANISH Randomized Trial.

    Get PDF
    Non-commercial use onlyRATIONALE: There remains uncertainty about the role of corticosteroids in sepsis with clear beneficial effects on shock duration, but conflicting survival effects. Two transcriptomic sepsis response signatures (SRSs) have been identified. SRS1 is relatively immunosuppressed, whereas SRS2 is relatively immunocompetent. OBJECTIVES: We aimed to categorize patients based on SRS endotypes to determine if these profiles influenced response to either norepinephrine or vasopressin, or to corticosteroids in septic shock. METHODS: A post hoc analysis was performed of a double-blind, randomized clinical trial in septic shock (VANISH [Vasopressin vs. Norepinephrine as Initial Therapy in Septic Shock]). Patients were included within 6 hours of onset of shock and were randomized to receive norepinephrine or vasopressin followed by hydrocortisone or placebo. Genome-wide gene expression profiling was performed and SRS endotype was determined by a previously established model using seven discriminant genes. MEASUREMENTS AND MAIN RESULTS: Samples were available from 176 patients: 83 SRS1 and 93 SRS2. There was no significant interaction between SRS group and vasopressor assignment (P = 0.50). However, there was an interaction between assignment to hydrocortisone or placebo, and SRS endotype (P = 0.02). Hydrocortisone use was associated with increased mortality in those with an SRS2 phenotype (odds ratio = 7.9; 95% confidence interval = 1.6-39.9). CONCLUSIONS: Transcriptomic profile at onset of septic shock was associated with response to corticosteroids. Those with the immunocompetent SRS2 endotype had significantly higher mortality when given corticosteroids compared with placebo. Clinical trial registered with www.clinicaltrials.gov (ISRCTN 20769191).Supported by the UK National Institute for Health Research (NIHR) under Research for Patient Benefit program grant PB-PG-0610-22350, NIHR Clinician Scientist Award NIHR/CS/009/007, and NIHR Research Professor award RP-2015-06-018 (A.C.G.); also supported by the NIHR Imperial Biomedical Research Centre, the UK Intensive Care Foundation, Wellcome Trust grant 090532/Z/09/Z to core facilities at the Wellcome Centre for Human Genetics, Wellcome Trust Investigator Award 204969/Z/16/Z (J.C.K.), and by the NIHR Oxford Biomedical Research Centre

    Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors.

    Get PDF
    BACKGROUND: Hepcidin is a major regulator of iron metabolism and plays a key role in anemia of chronic disease, reducing intestinal iron uptake and release from body iron stores. Hypoxia and chemical stabilizers of the hypoxia-inducible transcription factor (HIF) have been shown to suppress hepcidin expression. We therefore investigated the role of HIF in hepcidin regulation. METHODOLOGY/PRINCIPAL FINDINGS: Hepcidin mRNA was down-regulated in hepatoma cells by chemical HIF stabilizers and iron chelators, respectively. In contrast, the response to hypoxia was variable. The decrease in hepcidin mRNA was not reversed by HIF-1alpha or HIF-2alpha knock-down or by depletion of the HIF and iron regulatory protein (IRP) target transferrin receptor 1 (TfR1). However, the response of hepcidin to hypoxia and chemical HIF inducers paralleled the regulation of transferrin receptor 2 (TfR2), one of the genes critical to hepcidin expression. Hepcidin expression was also markedly and rapidly decreased by serum deprivation, independent of transferrin-bound iron, and by the phosphatidylinositol 3 (PI3) kinase inhibitor LY294002, indicating that growth factors are required for hepcidin expression in vitro. Hepcidin promoter constructs mirrored the response of mRNA levels to interleukin-6 and bone morphogenetic proteins, but not consistently to hypoxia or HIF stabilizers, and deletion of the putative HIF binding motifs did not alter the response to different hypoxic stimuli. In mice exposed to carbon monoxide, hypoxia or the chemical HIF inducer N-oxalylglycine, liver hepcidin 1 mRNA was elevated rather than decreased. CONCLUSIONS/SIGNIFICANCE: Taken together, these data indicate that hepcidin is neither a direct target of HIF, nor indirectly regulated by HIF through induction of TfR1 expression. Hepcidin mRNA expression in vitro is highly sensitive to the presence of serum factors and PI3 kinase inhibition and parallels TfR2 expression

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore