10 research outputs found

    Ribonucleotide reductase, a novel drug target for gonorrhea

    No full text
    Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4β4 state in the presence of the β subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.</jats:p

    Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial

    No full text
    Background Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. Methods This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged >= 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] >= 40% and <= 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. Findings Between Sept 8,2009, and Nov 30,2010,238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. Interpretation Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taldng chronic inhaled tobramycin

    Discovery and Optimization of Indolyl-Containing 4‑Hydroxy-2-Pyridone Type II DNA Topoisomerase Inhibitors Active against Multidrug Resistant Gram-negative Bacteria

    No full text
    There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure–activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved <i>in vitro</i> antibacterial activity against fluoroquinolone resistant strains. Compounds <b>6o</b> and <b>6v</b> are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds <b>6o</b> and <b>6v</b> showed improved MIC<sub>90</sub> values against <i>Escherichia coli</i> (0.5–1 μg/mL) and <i>Acinetobacter baumannii</i> (8–16 μg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of <i>E. coli</i>
    corecore