245 research outputs found
Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework
Fibre ropes with the latest technology have emerged as an appealing
alternative to steel ropes for offshore industries due to their lightweight and
high tensile strength. At the same time, frequent inspection of these ropes is
essential to ensure the proper functioning and safety of the entire system. The
development of deep learning (DL) models in condition monitoring (CM)
applications offers a simpler and more effective approach for defect detection
in synthetic fibre ropes (SFRs). The present paper investigates the performance
of Detectron2, a state-of-the-art library for defect detection and instance
segmentation. Detectron2 with Mask R-CNN architecture is used for segmenting
defects in SFRs. Mask R-CNN with various backbone configurations has been
trained and tested on an experimentally obtained dataset comprising 1,803
high-dimensional images containing seven damage classes (loop high, loop
medium, loop low, compression, core out, abrasion, and normal respectively) for
SFRs. By leveraging the capabilities of Detectron2, this study aims to develop
an automated and efficient method for detecting defects in SFRs, enhancing the
inspection process, and ensuring the safety of the fibre ropes.Comment: 12 pages, 7 figures, 4 table
Europium doped-double sodium bismuth molybdate nanoparticles as contrast agents for luminescence bioimaging and X-ray computed tomography
A one-pot method for the synthesis of uniform Eu3+-doped NaBi(MoO4)2 nanoparticles with an ellipsoidal shape and tetragonal crystal structure functionalized with polyacrylic acid is reported for the first time in the literature. The method is based on a homogeneous precipitation reaction from solutions in an ethylene glycol/water medium containing appropriate bismuth, sodium, and molybdate precursors and polyacrylic acid. The luminescence properties (excitation and emission spectra and luminescence lifetime) of such nanoparticles are evaluated for different Eu3+ doping levels, finding an intense red emission for all synthesized samples. The X-ray attenuation properties of the nanoparticles have been also analyzed, which were found to be better than those of a commercially computed tomography contrast agent (iohexol). The dispersibility of the nanoparticles in a physiological medium was also analyzed, finding that they could be well dispersed in a 2-N-morpholinoethanesulfonic acid monohydrate medium (pH = 6.5). Finally, the cell viability of such a phosphor has been analyzed using MIA-PaCa-2 cells and its in vivo toxicity has been evaluated using the nematode Caenorhabditis elegans model finding no significant toxicity in both cases up to a nanoparticle concentration of 100 μg mL−1, which is within the range required for most in vivo applications. The developed Eu3+-doped NaBi(MoO4)2 nanoparticles are, therefore, excellent candidates for their use as bimodal probes for luminescence imaging and X-ray computed tomography
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
Perturbative Effects in the Form Factor \gamma\gamma^*\to \pi and Extraction of the Pion Wave Function from CLEO Data
We study the pion form factor F^{\pi \gamma\gamma^*}(Q^2) in the light-cone
sum rule approach, accounting for radiative corrections and higher twist
effects.
Comparing the results to the CLEO experimental data on F^{\pi
\gamma\gamma^*}(Q^2), we extract the the pion distribution amplitude of
twist-2. The deviation of the distribution amplitude from the asymptotic one is
small and is estimated to be a_2(\mu) = 0.12 \pm 0.03 at \mu=2.4 GeV, in the
model with one non-asymptotic term. The ansatz with two non-asymptotic terms
gives some region of a_2 and a_4, which is consistent with the asymptotic
distribution amplitude, but does not agree with some old models.Comment: 21 pages, LaTeX, 7 eps figures; (v2): Phys. Rev. D versio
Diverse values of nature for sustainability
Twenty-five years since foundational publications on valuing ecosystem services for human well-being(1,2), addressing the global biodiversity crisis(3) still implies confronting barriers to incorporating nature's diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever(4). Notwithstanding agreements to incorporate nature's values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)(5) and the UN Sustainable Development Goals(6), predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature(7). Arguably, a 'values crisis' underpins the intertwined crises of biodiversity loss and climate change(8), pandemic emergence(9) and socio-environmental injustices(10). On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature's diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions(7,11). Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures
Diverse values of nature for sustainability
Twenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures
An estimate of the number of tropical tree species
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.</p
- …