226 research outputs found

    Ni-Cu-PGE-Cr-V bearing layered mafic-ultramafic intrusions of Russia - preface to a thematic issue

    Get PDF
    Layered mafic-ultramafic intrusions host some of the world’s largest ore deposits, notably in the Bushveld Complex of South Africa, the Great Dyke of Zimbabwe, and the Stillwater Complex of Montana. More than 400 intrusions have so far been discovered globally, but many remain little studied. This thematic issue contains papers on several layered intrusions from Russia (and including data on some coeval Finnish intrusions) that were presented at the 12th International Platinum Symposium in Yekaterinburg, Russia, in August 2014. This conference served as a showcase of ongoing research on Russian mafic-ultramafic intrusions and their PGE-Ni-Cu-Cr-V mineralization. Most of the intrusions remain poorly known outside Russia yet have a long history of exploration and mining going back several decades. In the present issue, papers are presented on the ∼2.5 Ga Monchepluton, the 1.85–1.88 Ga Chineysky intrusion and the 728 Ma Yoko-Dovyren intrusion, which host important Cu-Ni, V-Ti, and PGE ore deposits mined in the past and/or presently

    DESCRIPTION OF INFORMATION-MEASURING SYSTEM OF CONTROL OF PARAMETERS OF THE VECTOR WIND ON THE PARKING, THE STARTING AND LANDING MODES SINGLE-ROTOR HELICOPTER

    Full text link
    Discusses the relevance of the task, principles of construction and advantages of information-measuring system of control of parameters of the vector wind on the parking, the starting and landing modes single-rotor helicopter

    Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2

    Full text link
    We study the properties of a capacitive 13.56 MHz discharge properties with a mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ions transport and plasmochemical processes. A significant change of plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.Comment: 11 pages, 14 figure

    Magma feeding paleochannel in the Monchegorsk ore region: geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia)

    Get PDF
    A comprehensive study of a 340 m thick lenticular-sheet body of ultramafic composition penetrated by structural well M-1 at a depth of about 2.2 km was accomplished. Its main volume is composed of plagioharzburgite; fine-grained rocks of norite and orthopyroxenite chilling zones are preserved on endocontacts. The rocks of the body are similar in composition to the rocks near the underlying ore-bearing layered intrusion – the Monchepluton. The age of intrusion of the ultramafic body is 2510 ± 9 Ma (U-Pb, ID-TIMS, zircon) and, taking into account analytical errors, is comparable with the formation period of the Monchepluton (2507-2498 Ma). According to the study of the Sm-Nd system in rocks and minerals, a positive value of the eNd (+1.1) parameter was established, similar to that in dunites and chromitites of the Monchepluton. Based on these results, the ultramafic body penetrated at depth was assigned to the magma feeding paleochannel through which the ultramafic, weakly contaminated magma entered the overlying magma chamber. This body is a unique example of a magma-feeding system for the ore-bearing layered intrusion of Precambrian age

    All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz

    Full text link
    Aims: We study the Galactic large-scale synchrotron emission by generating a reliable all-sky spectral index map and temperature map at 45 MHz. Methods: We use our observations, the published all-sky map at 408 MHz, and a bibliographical compilation to produce a map corrected for zero-level offset and extragalactic contribution. Results: We present full sky maps of the Galactic emission at 45 MHz and the Galactic spectral index between 45 and 408 MHz with an angular resolution of 5\degs. The spectral index varies between 2.1 and 2.7, reaching values below 2.5 at low latitude because of thermal free-free absorption and its maximum in the zone next to the Northern Spur.Comment: A&A accepte

    Morphological and geochemical variations along the eastern Galapagos Spreading Center

    Get PDF
    [1] As the eastern Galápagos Spreading Center (GSC) shallows westward toward the Galápagos Archipelago, axial morphology evolves from a low-relief, valley-and-ridge terrain to an increasingly prominent axial ridge, closely mirroring the western GSC. Between the Inca Transform (∼85.5°W) and its western termination near 91°W, the eastern GSC comprises seven morphological segments, separated by five morphological discontinuities and the eastward propagating 87°W overlapping spreading center. Combined morphologic and geochemical data divide the eastern GSC into two domains independent of the fine-scale morphologic segmentation. The western domain is defined by its axial ridge morphology and highly variable lava population. Elemental data define steep along-axis gradients, reflecting a complex source that includes one or more hot spot–related components in addition to a highly depleted component. The eastern domain is defined by transitional, valley-and-ridge morphologies and a surprisingly invariant lava population. This population is dominated by shallow crystal fractionation processes and displays significantly less variability attributable to multiple source components. The Galápagos hot spot has long been known to have a symmetrical, long-wavelength influence on crustal accretion along the GSC. Existing isotopic and new elemental data define twin “geochemical peaks” that we interpret as loci for transfer of distinct source components from the Galápagos plume to the GSC. Although Na8 and Fe8 values lie within the negatively correlated global array, Na8 increases with decreasing axial depth, contrary to global trends and consistent with emerging deep, hydrous melting models that predict decreasing overall extent of melting despite increasing melt production. Support for hydrous melting comes from decreasing heavy REE, increasing La/Sm and La/Yb, and the systematics of decreasing FeO and increasing CaO and Al2O3 with decreasing distance to the hot spot. Overall, an enriched, deep melt component appears to coexist in the shallow mantle with a ubiquitous, depleted primitive melt component, consistent with new models for channelized melt flow connecting a deep hydrous melt regime with the dry shallow mantle. Nevertheless, an absence of low-Fe lavas suggests that hydrous melting is strictly limited beneath the eastern GSC, becoming dominant only near the western geochemical peak where input from a hydrous “Northern” or “Wolf-Darwin” plume component is inferred

    The 1874-1876 volcano-tectonic episode at Askja, North Iceland: Lateral flow revisited

    Get PDF
    The Askja volcanic system, North Iceland, experienced a volcano-tectonic episode between 1874 and 1876, the climax of which was a rhyolitic, phreatoplinian to Plinian eruption at Askja central volcano on 28–29 March 1875. Fissure eruptions also occurred in 1875, producing the Nýjahraun lava, 45–65 km north of Askja. The Nýjahraun basalt is indistinguishable, in terms of whole-rock major elements, from the small-volume basaltic eruptions that took place at Askja in the early 20th century. It has been suggested that all of these basalts originated from a shallow magma chamber beneath Askja, with the Nýjahraun eruptions being fed by northward-propagating lateral dykes. It has also been conjectured that the Holuhraun lava, located at the southern tip of the Askja volcanic system 15–25 km south of Askja, was connected with the 1874–1876 Askja volcano-tectonic episode. We re-examine these interpretations in light of new whole-rock, glass and melt inclusion analyses from samples collected along the length of the Askja volcanic system. Glasses from Nýjahraun and the Askja 20th century eruptions are geochemically distinct. We suggest that the Askja 20th century basalts mixed with evolved melts in the crust, while the Nýjahraun magma evolved without such interactions. The Holuhraun basalt is more similar to lavas erupted on the Bárðarbunga-Veiðivötn volcanic system than to postglacial basalts from Askja, indicating that particular geochemical signatures are not necessarily confined to the tectonic or structural surface expression of single volcanic systems. This has important implications for the identification and delineation of individual volcanic systems beneath the northwest sector of Vatnajökull.Access to the Edinburgh Ion Microprobe Facility was funded by NERC grant IMF386/1109. MEH was supported by NERC studentship NE/F008929/1.This is the published version of an article originally published in Geochemistry, Geophysics, Geosystems and is also available at http://onlinelibrary.wiley.com/doi/10.1002/ggge.20151/abstract. Copyright 2013 American Geophysical Union
    corecore