15 research outputs found

    Attribute and technology value mapping for conceptual product design phase

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Mechanical Engineering Science following peer review. The final, definite version of this paper has been published in Journal of Mechanical Engineering Science, Aris Georgiou, George Haritos, Moyra Fowler, and Yasmin Imani, ‘Attribute and technology value mapping for conceptual product design phase’, Vol. 230(11): 1745-1756, May 2016, published by SAGE Publishing, available online at doi: https://doi.org/10.1177/0954406215585595. Copyright © 2016 The Author(s).The main focus of this paper is how the concept design phase of the product development process can be improved by using an objective data-driven approach in selecting a final concept design to progress further. A quantitative new test-bed ‘Product Optimisation Value Engineering’ (PROVEN) is presented to critically assess new and evolving powertrain technologies at the concept design phase. The new test-bed has the ability to define a technology value map to assess multiple technical options as a function of its attributes, whose precise values can be determined at a given cost. A mathematical model that incorporates a highly adaptable, data-driven and multi-attribute value approach to product specification and conceptual design is developed, novel to the concept design process. This creates a substantially optimised product offering to the market, reducing overall development costs while achieving customer satisfactionPeer reviewe

    Predictors of single word spelling in English-speaking children: a cross sectional study

    Get PDF
    Background: The study aimed to explore to what extent variables associated with lexical and sublexical spelling processes predicted single word spelling ability, and whether patterns of lexical and sublexical processes were different across ages. Methods: Beginning (mean age 7-years, N=144) and advanced (mean age 9-years, N=114) English-speaking spellers completed tasks associated with sublexical processing (phonological ability and phonological short-term memory), lexical processing (visual short-term memory, visual attention span), and factors known to predict spelling (e.g., rapid automatised naming). Results: Phonological ability, rapid automatised naming, visual short-term memory and visual attention span were significant predictors of spelling accuracy for beginning spellers, while for more advanced spellers, only visual attention span was a significant predictor. Conclusions: The findings suggested that for beginning spellers, both lexical and sublexical processes are important for single word spelling, but with increasing literacy experience, lexically related variables are more important

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Image & Icon : The New Greek Photography

    No full text

    Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring

    No full text
    The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father’s age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father’s age contributes to his offspring’s higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father’s advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father’s advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring’s diseases is crucial, so that they can be effectively guided through their reproductive years

    Finite element framework for describing dynamic wetting phenomena

    Get PDF
    The finite element simulation of dynamic wetting phenomena, requiring the computation of flow in a domain confined by intersecting a liquid-fluid free surface and a liquid-solid interface, with the three-phase contact line moving across the solid, is considered. For this class of flows, different finite element method (FEM) implementations have been used in the literature, and in some cases, these produced apparently contradictory results. In the present paper, a robust framework for the FEM simulation of dynamic wetting flows is developed, which, by consistently adhering to the FEM methodology, leaves no room for ad hoc 'optional' variations in the numerical handling of these flows. The developed approach makes it possible to conduct a convergence study, assess the spatial resolution required to achieve a preset accuracy and provide the corresponding benchmark calculations. This analysis allows one to identify numerical artefacts, which had previously been interpreted as physical effects, and demonstrates that suppressing numerical errors using a 'strong' implementation of a boundary condition creates bigger and less detectable errors elsewhere in the computational domain. We provide practical recommendations on the spatial resolution required by a numerical scheme for a given set of non-dimensional similarity parameters and give a user-friendly step-by-step guide specifying the entire implementation, which allows the reader to easily reproduce all presented results including the benchmark calculations. It is also shown how the developed framework accommodates generalizations of the mathematical model accounting for additional physical effects, such as gradients in surface tensions. © 2011 John Wiley and Sons, Ltd
    corecore