26 research outputs found

    The “speed limit” for macromolecular crystal growth

    Get PDF
    A simple “diffusion‐to‐capture” model is used to estimate the upper limit to the growth rate of macromolecular crystals under conditions when the rate limiting process is the mass transfer of sample from solution to the crystal. Under diffusion‐limited crystal growth conditions, this model predicts that the cross‐sectional area of a crystal will increase linearly with time; this prediction is validated by monitoring the growth rate of lysozyme crystals. A consequence of this analysis is that when crystal growth is diffusion‐limited, micron‐sized crystals can be produced in ~1 s, which would be compatible with the turnover time of many enzymes. Consequently, the ability to record diffraction patterns from sub‐micron sized crystals by X‐ray Free Electron Lasers and micro‐electron diffraction technologies opens the possibility of trapping intermediate enzyme states by crystallization

    First draft genome of \u3ci\u3eThecaphora frezii\u3c/i\u3e, causal agent of peanut smut disease

    Get PDF
    Objectives: The fungal pathogen Thecaphora frezii Carranza & Lindquist causes peanut smut, a severe disease currently endemic in Argentina. To study the ecology of T. frezii and to understand the mechanisms of smut resistance in peanut plants, it is crucial to know the genetics of this pathogen. The objective of this work was to isolate the pathogen and generate the first draft genome of T. frezii that will be the basis for analyzing its potential genetic diversity and its interaction with peanut cultivars. Our research group is working to identify peanut germplasm with smut resistance and to understand the genetics of the pathogen. Knowing the genome of T. frezii will help analyze potential variants of this pathogen and contribute to develop enhanced peanut germplasm with broader and long-lasting resistance. Data description: Thecaphora frezii isolate IPAVE 0401 (here referred as T.f.B7) was obtained from a single hyphal-tip culture, its DNA was sequenced using Pacific Biosciences Sequel II (PacBio) and Illumina NovaSeq6000 (Nova). Data from both sequencing platforms were combined and the de novo assembling estimated a 29.3 Mb genome size. Completeness of the genome examined using Benchmarking Universal Single-Copy Orthologs (BUSCO) showed the assembly had 84.6% of the 758 genes in fungi_odb10

    Two QTLs govern the resistance to Sclerotinia minor in an interspecific peanut RIL population

    Get PDF
    Sclerotinia blight is a soilborne disease caused by Sclerotinia minor Jagger and can produce severe decrease in yield. Cultural management strategies and chemical treatment are not completely effective; therefore, growing peanut-resistant varieties is likely to be the most effective control method for this disease. Sclerotinia blight resistance has been identified in wild Arachis species and further transferred to peanut elite cultivars. To identify the genome regions conferring Sclerotinia blight resistance within a tetraploid genetic background, this study evaluated a population of recombinant inbred lines (RIL) with introgressed genes from three wild diploid species: A. cardenasii, A. correntina, and A. batizocoi. Two consistent quantitative trait loci (QTLs), qSbIA04 and qSbIB04 located on chromosomes A04 and B04, respectively, were identified. The QTL qSbIA04 was mapped at 56.39 cM explaining 29% of the phenotypic variance and qSbIB04 was mapped at 13.38 cM explaining 22% of the overall phenotypic variance

    Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K-edge High Resolution X-ray Absorption Spectroscopy

    Get PDF
    The size and complexity of Mo-dependent nitrogenase, a multicomponent enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe–Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron–sulfur clusters. Supported by experimental small molecule model data in combination with time dependent density functional theory (TDDFT) calculations, the HERFD XAS data is consistent with an assignment of Fe2/Fe6 as an antiferromagnetically coupled diferric pair. HERFD XAS and EXAFS have also been applied to Se-substituted CO-inhibited MoFe protein, demonstrating the ability of these methods to reveal electronic and structural changes that occur upon substrate binding. These results emphasize the utility of Se HERFD XAS and EXAFS for selectively probing the local electronic and geometric structure of FeMoco

    Introgression of peanut smut resistance from landraces to elite peanut cultivars (\u3ci\u3eArachis hypogaea\u3c/i\u3e L.)

    Get PDF
    Smut disease caused by the fungal pathogen Thecaphora frezii Carranza & Lindquist is threatening the peanut production in Argentina. Fungicides commonly used in the peanut crop have shown little or no effect controlling the disease, making it a priority to obtain peanut varieties resistant to smut. In this study, recombinant inbred lines (RILs) were developed from three crosses between three susceptible peanut elite cultivars (Arachis hypogaea L. subsp. hypogaea) and two resistant landraces (Arachis hypogaea L. subsp. fastigiata Waldron). Parents and RILs were evaluated under high inoculum pressure (12000 teliospores g-1 of soil) over three years. Disease resistance parameters showed a broad range of variation with incidence mean values ranging from 1.0 to 35.0% and disease severity index ranging from 0.01 to 0.30. Average heritability (h2) estimates of 0.61 to 0.73 indicated that resistance in the RILs was heritable, with several lines (4 to 7 from each cross) showing a high degree of resistance and stability over three years. Evidence of genetic transfer between genetically distinguishable germplasm (introgression in a broad sense) was further supported by simple-sequence repeats (SSRs) and Insertion/Deletion (InDel) marker genotyping. This is the first report of smut genetic resistance identified in peanut landraces and its introgression into elite peanut cultivars

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Certain <it>Staphylococcus aureus </it>strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive <it>Staphylococcus aureus </it>strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country.</p> <p>Case presentation</p> <p>A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by <it>S. aureus</it>. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and <it>spa </it>typing, and the results revealed that the <it>S. aureus </it>isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles.</p> <p>Conclusion</p> <p>Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive <it>S. aureus </it>isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.</p

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Crystallization of Nitrogenase Proteins

    No full text
    Nitrogenase is the only known enzymatic system capable of reducing atmospheric dinitrogen to ammonia. This unique reaction requires tightly choreographed interactions between the nitrogenase component proteins, the molybdenum–iron (MoFe)- and iron (Fe)-proteins, as well as regulation of electron transfer between multiple metal centers that are only found in these components. Several decades of research beginning in the 1950s yielded substantial information of how nitrogenase manages the task of N2 fixation. However, key mechanistic steps in this highly oxygen-sensitive and ATP-intensive reaction have only recently been identified at an atomic level. A critical part in any mechanistic elucidation is the necessity to connect spectroscopic and functional properties of the component proteins to the detailed three-dimensional structures. Structural information derived from X-ray diffraction (XRD) methods has provided detailed atomic insights into the enzyme system and, in particular, its active site FeMo-cofactor. The following chapter outlines the general protocols for the crystallization of Azotobacter vinelandii (Av) nitrogenase component proteins, with a special emphasis on different applications, such as high-resolution XRD, single-crystal spectroscopy, and the structural characterization of bound inhibitors
    corecore