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RESEARCH ARTICLE
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Abstract

Smut disease caused by the fungal pathogen Thecaphora frezii Carranza & Lindquist is

threatening the peanut production in Argentina. Fungicides commonly used in the peanut

crop have shown little or no effect controlling the disease, making it a priority to obtain pea-

nut varieties resistant to smut. In this study, recombinant inbred lines (RILs) were developed

from three crosses between three susceptible peanut elite cultivars (Arachis hypogaea L.

subsp. hypogaea) and two resistant landraces (Arachis hypogaea L. subsp. fastigiata Wal-

dron). Parents and RILs were evaluated under high inoculum pressure (12000 teliospores

g-1 of soil) over three years. Disease resistance parameters showed a broad range of vari-

ation with incidence mean values ranging from 1.0 to 35.0% and disease severity index

ranging from 0.01 to 0.30. Average heritability (h2) estimates of 0.61 to 0.73 indicated that

resistance in the RILs was heritable, with several lines (4 to 7 from each cross) showing a

high degree of resistance and stability over three years. Evidence of genetic transfer be-

tween genetically distinguishable germplasm (introgression in a broad sense) was further

supported by simple-sequence repeats (SSRs) and Insertion/Deletion (InDel) marker geno-

typing. This is the first report of smut genetic resistance identified in peanut landraces and

its introgression into elite peanut cultivars.

Introduction

Smut disease is threatening the peanut production in Argentina [1]. Though Argentina pro-

duces only 1 Mt of the 38 Mt generated worldwide [2], it exports 80% of the production for

approximately $ 800 million U.S. dollars, making it the first peanut exporter in the world

(Camara Argentina del Mani, available from: www.camaradelmani.org.ar). Peanut smut dis-

ease, which is caused by the fungal pathogen Thecaphora frezii [3, 4], has been observed in

100% of the peanut production area of Argentina, 350,000 ha [5–7]. In highly infested areas,
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the disease incidence can reach up to 52% accompanied by yield losses of 35% [7]. Thecaphora
frezii invades the pegs as they enter the ground, then consuming the peanut seeds and leaving

behind a mass of dark-brown teliospores [4]. The teliospores accumulate in soil, building up

inoculum with each cropping season [8]. Fungicides commonly used in the peanut crop have

shown little or no effect controlling peanut smut [9–11], making it an utmost priority to obtain

peanut varieties resistant to this disease.

The narrow genetic base of cultivated peanut has been well documented [12–14]. Therefore,

wild peanuts have received much consideration as sources of genetic variation and potential

disease resistance [15–19]. Being the cultivated peanut (A. hypogaea) an allotetraploid [20], the

incorporation of genetic material from wild diploid species requires generating synthetic

amphidiploids [21, 22]. On the contrary, peanut landraces are an alternative source of genetic

variability. These germplasms are valuable resources from the primary gene pool that can be

immediately incorporated into commercial cultivars [23, 24].

As part of a large breeding program from Criadero El Carmen to develop peanut varieties

with resistance to smut disease, hundreds of accessions including landraces, advanced breed-

ing lines, and elite peanut varieties were previously screened. Two of those germplasms, which

were identified as resistant, were later crossed with susceptible commercial peanut cultivars.

Here we report a multi-year phenotyping of three crosses between susceptible and resistant

lines, as well as the genetic fingerprinting of parents and progeny of these crosses using sim-

ple-sequence repeats (SSRs) and Insertion/Deletion (InDel) markers.

Materials and methods

Plant material

Three recombinant inbred lines (RILs) were developed from crosses between three susceptible

peanut cultivars, Granoleico, Guasu, and I1014 and two resistant germplasms, I0322 and

I0349 (Table 1). All parental lines used in the crosses are tetraploid (2n = 4x = 40). The

line I0322 was selected from a landrace of Arachis hypogaea L subsp. fastigiata Waldron var.

fastigiata (Waldron) Krapov. & W. C. Greg) introduced from Bolivia [25]. The line I0349

originated from a genetically heterogeneous germplasm identified as Arachis hypogaea L,

resembling var. fastigiata, although different from the fastigiata type (G. Seijo, personal com-

munication). Further taxonomic characterization is needed to elucidate the genetic identity of

this germplasm. The cross I0322×Guasu (JS31411) was performed during the 2010–2011

growing season, while I0349×I1014 (JS35112) and I0349×Granoleico (JS34212) were made

during 2011–2012. The initial size of the F2 population from each cross was reduced to around

20% of the progeny by keeping the most resistant lines and advancing them to F6 and F7 by

single seed descent. Accordingly, the final number of lines in each of the crosses ranged from

16 to 19 (Table 1).

Disease assessment

The F5, F6 and F7 RIL generations of JS31411 and the F4, F5, F6 RIL generations of JS35112 and

JS34212 were evaluated at the Criadero El Carmen experimental farm located in General

Table 1. Description of crosses and progeny.

Cross Parental lines

(Female × Male)

Progeny

(No of RILs)

JS31411 GUASÚ × I0322 16

JS34212 GRANOLEICO × I0349 19

JS35112 I1014 × I0349 18

https://doi.org/10.1371/journal.pone.0211920.t001
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Cabrera, Cordoba, Argentina (32˚49’46"S, 63˚52’12"W). The evaluations were performed dur-

ing the growing seasons of 2014–15, 2015–16, and 2016–17. Single-row plots (2.5 m long)

were arranged in a randomized complete block design with two replicates. Plots were planted

in infested soils containing an average of 12000 of T. frezii teliospores g-1 of soil. This inoculum

density is three times higher than the average concentration (18–4400 teliospores g-1 of soil)

present in naturally smut-infested fields of the peanut-growing area of Argentina [8]. The pres-

ence of T. frezii in soil was assessed by teliospores counting according to the method of Mari-

nelli et al. [4]. Standard agronomic practices, with no irrigation, were applied to control weeds

and other peanut diseases. The entire plots were harvested at physiological maturity deter-

mined by the nursery standards for breeding purposes. One hundred randomly selected

mature pods per plot were manually opened and visually assessed to score disease incidence

and disease index (DI) as follows:

Disease Incidence %ð Þ ¼
n� of infected pods
n� of total pods

� �

� 100 ð1Þ

Disease Index ¼
Sðseverity class� number of infected podsÞ
n� of total pods�maximum severity class

� �

ð2Þ

Disease index estimates were based on McKinney infection rating formula [26]. Severity

classes were determined on a 0 to 4 scale as described in [1], where 0 = healthy pods; 1 = normal

pod with a small sorus in single kernel; 2 = deformed or normal pod with half of the kernels

affected; 3 = deformed pod and one completely smutted kernel; and 4 = deformed pod with all

kernels completely smutted (Fig 1).

Meteorological conditions for the three seasons of phenotyping were extracted for the

department Juarez Celman, Cordoba, Argentina, from the Red de Estaciones Meteorologicas,

summarized every year by Bolsa de Cereales de Cordoba [5, 27–29]. Analysis of Variance on

Ranks was performed for average maximum temperatures and rain during the three cropping

seasons; mean values were compared by Tukey’s or Dunn’s tests using the statistical package

Sigma Plot v. 12.5 (Systat Software Inc., San Jose, CA).

Fig 1. Peanut smut severity scale. Classes on a 0 to 4 scale, where 0 = healthy pods, 1 = normal pod with a small sorus in single

kernel, 2 = deformed or normal pod with half of the kernels affected, 3 = deformed pod and one completely smutted kernel, and

4 = deformed pod with all kernels completely smutted [1].

https://doi.org/10.1371/journal.pone.0211920.g001
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Genotypic variability characterized by SSR and InDel markers

Advanced lines from the three peanut crosses between resistant and susceptible parents

(Table 1) were multiplied in a growth chamber and all individuals (47 progeny and 5 parents)

were fingerprinted with SSRs and InDel markers. DNA was extracted from young leaves using

DNeasy PowerPlant Pro Kit (Qiagen) and CTAB method [30]. The quantity and quality of

DNA was assessed by electrophoresis in 1% agarose gels using phage lambda/HindIIImarker

(Pb-L Productos Bio-Lógicos, Argentina) for quality control.

The parents of the three populations were screened with 376 molecular markers: 288 SSRs

[31], 12 insertion/deletion (InDel) markers [32], and 73 SSRs obtained from the literature for

peanut and related species [14, 33–37]. The complete list of 376 primer sets was previously

reported (Arias et al., 2018). From these markers, 94 were selected to screen the progenies of

the three crosses. Forward primers were 5’ tailed with the sequence 5’-CAGTTTTCCCAGT
CACGAC-3’ (Waldbieser et al., 2003) and reverse primers were tailed at the 5’ end with the

sequence 5’-GTTT-3’ (Brownstein et al., 1996). Primer 5’-CAGTTTTCCCAGTCACGA
C-3’ labeled with 6-carboxy-X-rhodamine (ROX) (IDT-Technologies, Coralville, IA) was

used for amplification of 10-ng DNA in a 5 μL reaction using Titanium Taq DNA Polymerase

(Clontech, Mountain View, CA) as reported before [38]. Fluorescently-labeled PCR fragments

were analyzed by capillary electrophoresis on an ABI 3730XL DNA Analyzer (Applied Biosys-

tems, Foster City, CA) and data were processed using Gene Mapper software 4.0 (Applied Bio-

systems, Foster City, CA). PCR amplicon scoring was recorded as allele size in base pairs (bp)

allele size and converted to binary data as zeroes (absence) and ones (presence). Given the

complexity of the allotetraploid genome of cultivated peanut, where similar size amplicons

could correspond to different sub-genomes, each amplicon observed in the molecular marker

data was analyzed as a dominant marker. Thus, no true heterozygosity was recorded. The

number of alleles per locus and allele size range (bp) were determined for each primer set.

Polymorphic information content (PIC) for each marker was calculated according to Botstein

et al. [39]. For each of the crosses, 3D-Principal Coordinate Analysis (PCoA) [40] was per-

formed using NTSYSpc v. 2.2, [41] (Exeter Software, Setauket, NY). For each progeny, allele

Table 2. Smut disease incidence and disease index mean, standard error (SE), and range for the parental lines (P1, P2) and generations of RILs from the three pea-

nut corsses: JS31411 (I), JS34212 (II), and JS35112 (III).

Cross Genotypes Incidence (%) Disease Index

Mean ± SE Range Mean ± SE Range

JS31411 (I) P1 (I0322) 0.43 ± 0.31 2.90 0.00 ± 0.00 0.03

P2 (Guasu) 27.80 ± 4.50 42.40 0.18 ± 0.03 0.27

F5-RILs 12.80 ± 2.00 42.70 0.09 ± 0.02 0.33

F6-RILs 13.36 ± 2.94 65.20 0.10 ± 0.02 0.51

F7-RILs 11.37 ± 1.98 39.00 0.07 ± 0.01 0.25

JS34212 (II) P1 (I0349) 3.58 ± 1.11 8.80 0.02 ± 0.01 0.05

P2 (Granoleico) 44.5 ± 3.69 34.30 0.30 ± 0.03 0.37

F4-RILs 9.95 ± 2.09 41.30 0.07 ± 0.01 0.27

F5-RILs 15.78 ± 2.57 56.60 0.12 ± 0.02 0.48

F6-RILs 10.82 ± 2.00 49.00 0.07 ± 0.01 0.32

JS35112 (III) P1 (I0349) 3.58 ± 1.11 8.80 0.02 ± 0.01 0.05

P2 (I1014) 17.98 ± 2.17 9.80 0.11 ± 0.01 0.05

F4-RILs 8.41 ± 1.57 41.18 0.06 ± 0.01 0.34

F5-RILs 8.47 ± 1.63 34.40 0.06 ± 0.01 0.27

F6-RILs 9.06 ± 1.50 32.10 0.05 ± 0.01 0.20

https://doi.org/10.1371/journal.pone.0211920.t002
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contribution from each parent was calculated for alleles present in only one of the parents, and

the values were expressed as percentage. DNA sequences containing the SSR and InDel mark-

ers were mapped to the genome assemblies of A. duranensis and A. ipaënsis [42] using BLAST

[43].

Phenotypic statistical analysis

Incidence and DI phenotypic values were square root transformed and subjected to statistical

analysis. Trait heritability was estimated based on parent-offspring regression/correlation

analysis. This method does not require the assumption of normality as in the analysis of vari-

ance and in self-pollinated species such as peanut the regression coefficient is equal to the nar-

row sense heritability (h2) of a trait [44]. Given that parent (e.g. F5) and progeny (e.g. F6)

generations were evaluated in different environments (different years), the correlation (Pear-

son’s) rather than the regression coefficient was used in order to decrease the potential envi-

ronmental effects.

Narrow sense heritability was calculated according to the equation:

h2 ¼ rFxFy ¼
CovFxFy
ðVFxVFyÞ

1=2

where r is the Pearson’s correlation, Cov is the covariance, and VFx and VFy are the variance in

the parental (e.g. F5) and progeny (e.g. F6) generations, respectively.

Correlation analyses were further performed to determine the relationships between disease

measurements (incidence and DI). Correlation coefficients were calculated and plotted using

the Corrplot R package [45]. Tests for association between trait and SSR/InDel markers were

conducted using the simple linear regression model (lm), p-values were adjusted for multiple

testing using the Bonferroni correction, and means were compared using the Tukey test. All

statistical analyses were performed in R software [46]. To test the significance of smut disease

resistance/susceptibility variability, incidence mean values were subjected to analysis of vari-

ance and then compared by the Scott-Knott clustering algorithm with a α value of 0.05, using

the ScottKnott R package [47].

Results

Phenotypic statistical analysis

Screening in an environment with high inoculum pressure allowed the development of high

intensity smut symptoms as well as the discrimination between levels of resistance. Disease

resistance measurements within and across generations exhibited a broad range of phenotypic

variation with incidence mean values ranging from 1.0 to 35.0% and disease severity index

ranging from 0.01 to 0.30. Of the two resistant parental lines, I0322 exhibited the highest levels

of resistance with a mean incidence value of 0.43% and a DI mean value close to zero. Among

the susceptible parents, Granoleico showed the highest disease incidence (44.5%) and DI

(0.30) scores (Table 2, S1 Table). Recombinant inbred lines derived from crosses JS34212 (II)

and JS35112 (III) showed transgressive phenotypes with incidence and disease index values

lower than the mean-parent values of the common resistant parent I0349. No transgressive

segregants for smut resistance were observed in RILs derived from the cross JS31411 (I) as

I0322 is highly resistant (nearly immune) (Fig 2). While it was beyond the scope of this paper

to present the analysis of the crosses based on agronomic performance, it is worth noting that

two of the resistant lines, one from cross JS31411 (line I-14) and one from cross JS35112 (line

III-61) showed favorable agronomic characteristics (J. Soave personal communication).

Pre-breeding peanut smut resistance using landraces
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Correlation coefficients were calculated both, at the trait and generation levels. At the trait

level, a strong correlation (� 0.80, P� 0.01) was observed between incidence and DI measure-

ments for each generation of RIL (Fig 3). At the generation level, correlation coefficients for

the same trait in different generations corresponded to the narrow heritability (h2) of the trait.

Fig 2. Genotype groups for incidence mean values as defined by the Scott-Knott algorithm (α = 0.05).

https://doi.org/10.1371/journal.pone.0211920.g002
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Fig 3. Correlogram showing the correlations (P-value� 0.01) between traits and generation of RILs. Pearson’s

correlation coefficients are indicated in the cells.

https://doi.org/10.1371/journal.pone.0211920.g003
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Correlation coefficients ranged from 0.43 (IN, JS35112) to 0.91 (DI, JS31411) indicating mod-

erate (� 0.40) to strong (� 0.80) heritability. Higher correlations between successive genera-

tions, particularly between more advanced generations, suggest parent/offspring consistency

in the response to the disease (Fig 3).

Significant phenotypic differences among genotype means (averaged across generations)

were clustered into groups by the Scott-Knott algorithm (P� 0.05). Fig 2 shows the results

based on disease incidence values for all three crosses. For cross JS3411 (I), among the 16 RILs,

6 were classified as resistant (i.e. incidence means were not significantly different from that of

the resistant parent I0322), six as intermediate, and four as susceptible (i.e. incidence means

were not significantly different from that of the susceptible parent Guasu). Similar patterns of

grouping were observed in cross JS34212 (II). For cross JS351112 (III), RILs with intermediate

values were split into two groups, based mainly on standard error differences. RILs III-71 and

III-56 exhibited higher standard errors compared to the group of RILs with similar intermedi-

ate incidence values (i.e., III-51, III-53, III55, III-63).

Weather during phenotyping seasons

Meteorological data, including monthly rain and the averages of maximum/minimum temper-

atures during the peanut cropping seasons (December to May) 2014/15, 2015/16 and 2016/17

in the department Juarez Celman, Cordoba, are plotted in S1 Fig. Overall, 2014/15 was warmer

(max average temperatures for April and May, 28 and 22˚C, respectively) for the last two

months of the crop than 2015/16 or 2016/17 (23±1–17±1˚C) (p� 0.05). The beginning of the

cropping season (Jan/Feb/Mar) 2016/17 received significantly (p� 0.05) less rain (91 mm)

than seasons 2014/15 and 2015/16 (138–141 mm, respectively).

Molecular markers

From a set of 94 SSR/InDel markers that were selected to genotype the parents and RILs of the

three crosses, 37 (39%) showed non-transferability, that is, did not amplify any of the parents.

After an initial filtering to remove markers that failed to amplify in one or more of the parents,

and/or markers with low-quality amplification, 52 markers (312 alleles) were available for fur-

ther analyses (S2 Table). A list of primer sets, including number of alleles per locus and allele

size range is shown in Table 3. The number of markers per crosses ranged from 47 to 52, while

the number of alleles ranged from 180 to 226 (Table 4). Alleles present in the progeny and in

only one of the parents were referred as “parent specific alleles” (PSA) (Table 4, S3 Table).

Cluster analysis. The 3D principal-coordinate analysis (3D-PCoA) for each of the three

crosses showed each progeny as a single cluster with no evidence of outliers and clearly sepa-

rated from the parental genotypes (P1, P2, Fig 4). In crosses JS34212 (II) and JS35112 (III) the

progenies were closer to the susceptible parent (P1) than to the resistant one (P2, Fig 4, S2

Fig). The first coordinate, Dim-1, in all three crosses clearly separated the progeny from the

resistant parents, and in crosses JS34212 (II) and JS35112 (III) Dim-1 also separated the resis-

tant from the susceptible parents. In cross JS31411 (I), this separation was more effective by

the second coordinate, Dim-2. The percentage of genetic variation explained by Dim-1 was

19.2, 24.9 and 31.2, for crosses I, II and III, respectively. The percentage of the genetic variation

explained by the first three coordinates combined (Dim-1, Dim-2 and Dim-3) for crosses

JS31411 (I), JS34212 (II) and JS35112 (III) was 49, 41 and 49%, respectively, eigenvalues shown

in Fig 4. The Jaccard’s genetic distances between resistant and susceptible parents was 0.49,

1.24 and 1.13 for cross JS31411 (I), JS34212 (II) and JS35112 (III) respectively, showing that

the resistant parent I0349 was comparatively more distant than the resistant parent I0322 to

the corresponding susceptible parents.
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Table 3. Molecular markers used in genotyping and analysis of three peanut crosses between smut-resistant landraces and susceptible elite cultivars. Crosses were

JS31411 (I), JS34212 (II) and JS35112 (III). Numbers in parentheses indicate the references for markers: (1) [37], (2) [36], (3) [14], (4) [48], (5) [32], the rest of the markers

were recently reported [31].

Marker Sequence 5’! 3’ No. of alleles Amplicon size (bp) PIC

NPRL_A0A9P F: CCTAGTTGCTTCCGTAACCGACAT 4 140–361 0.619

R: TCAGCCTAAGCACACACCAAGT

NPRL_AAJZM F: CTGGCTGCCTTATAATCACCACAT 1 140 0.000

R: TCAGCAGAAGAATCACCACTACTCC

NPRL_ABCLW F: CCAACTTGAACATCTTCTTGTCCA 1 138 0.000

R: TCGTTCTTTCAGGTTTTTCACCAT

NPRL_AKH02 F: CGTGTTCTTGCAGCAGTATG 15 108–412 0.551

R: ACACTACCACCACACTAGAC

NPRL_BULCQ F: GCTCGCATCG TTGAGATCAAC 7 95–487 0.764

R: TTGGCTTCCAAGGTCTTC

NPRL_cont00136a F: TAACCCTACGACATCTGCATCTCA 6 139–352 0.142

R: CTGCTACTCCATTCCGTCATTCTT

NPRL_cont00201a F: TGACAACGGTTGAAAAGGAGATTT 5 160–463 0.666

R: CCTTCACAACCTTACATTCCCAAG

NPRL_cont00236a F: TCTACCCAACAACCCACCTCATAG 5 176–393 0.706

R: ATTCATGTAGCCGACCCCACTTA

NPRL_cont00250a F: TGTTGCTGAGAAGATGATGGAAAA 11 154–487 0.699

R: CATGGGAGAATCCTATGGAAACAC

NPRL_cont00266a F: TTTTTCCTTCTCCTACCCCTCATC 6 138–451 0.722

R: CACTTGTCAAAGAAAAGAGAAAGCG

NPRL_cont00289a F: AATTCGTCCTACTCTCACAGTCCG 2 153–229 0.500

R: ATTGCTGATGACAATGACGATGAC

NPRL_cont00381a F: CAACCATCATCCAACACTACCAAT 9 148–433 0.518

R: TCAGCAGCAATAAACAGTAAACAAGA

NPRL_cont00405a F: CCACTATCATTTCCCATCCACAAT 2 160–179 0.639

R: CAGCAGCAATATCTCAGCACAATC

NPRL_cont00460a F: CTAATGGGTGCAGGGATGTAAAAT 4 129–372 0.595

R: TATTGAGGGATTGGTCAAGGTGTT

NPRL_cont00551a F: CCTTCACCTGGAGCTAGTGAAATC 2 145–293 0.074

R: GTTGAGGGCTGTTCTTGATGAGAT

NPRL_cont00644a F: AGCTCCGAGGAGAAGAAGCTAAAC 3 125–277 0.145

R: ATTTGGCTTCGATCTGAAGATTTG

NPRL_cont00661a F: TTGTCATCTTTGACATCACCGTTT 5 171–344 0.534

R: CCACCTCTATCATCATCATGGCT

NPRL_cont00761a F: AGTTCCAAGTAACCACATCCCTCA 6 233–346 0.700

R: CCTGGTCATATCATCCAAACACAA

NPRL_cont00778a F: CCATTATCTTCAAAACGAATCCAAA 4 148–271 0.686

R: TTGTTTCGTTCTTCGTTCTTCTCC

NPRL_cont00816a F: TCGACTATGAGAAGAACGAAGAGAAA 3 99–340 0.426

R: AAGAACCACATTCTGAAGGTCCAC

NPRL_cont00843a F: TCAGCAACTCCAAGACCTTCTCTT 7 101–371 0.691

R: AAAAGAGTGCGAGAAGTGAAATGG

NPRL_cont00873a F: TCACTAACCGCATCTTCTTTGTCA 4 158–494 0.500

R: TAGAATGTGTTTGTGAAGGTTGCG

NPRL_cont00921a F: CCTCATGCCATAAAGCAAAGGTTA 9 124–422 0.609

R: CGTGCTTTGTAATGCCATATTTGA

(Continued)
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Table 3. (Continued)

Marker Sequence 5’! 3’ No. of alleles Amplicon size (bp) PIC

NPRL_cont01163a F: AGAGCAGAATGCTTGGTCCATA 6 105–456 0.683

R: TTACAACCTTTTATCAGTCTTCACTGC

NPRL_cont01192a F: GTTGCATATGTGGATGGAGAACAA 6 129–390 0.500

R: GCGTTGACGAAGTCAGACTAAGGT

NPRL_cont01277a F: ACAGCATGCCAGAGAAACCTAATC 12 115–495 0.782

R: GATGGGCTTAGCAACCATATTGAC

NPRL_cont01294a F: GGAAGGATTAAGCATCATCAACCA 11 114–478 0.751

R: CAATACAACCTTTTGGAGTTCGCT

NPRL_cont01491a F: CTAGGTGGTCGACGGTGGTG 8 110–479 0.544

R: CCCCTTTCTTCTTCCTCTTCTCTG

NPRL_cont01513a F: GAGAGAAAAAGGTTCCTCCCTAAGC 11 123–495 0.653

R: CGCTTGATTTAGCTTGGAGTTTCT

NPRL_cont01577a F: CTGAGAAGAGGATACGCGAGTGAG 1 242 0.000

R: TCATCTGCATCATCTTTTCCCTCT

NPRL_cont01653a F: GAAAGAGGAAGAAGAACGTGTAGCA 4 123–477 0.667

R: ATTCAAGGTACGTTTCTTGCCTTC

NPRL_cont01725a F: TTGTTGTCAACTCTAAGCAAGACAAA 8 114–460 0.641

R: GCACAACTTGAATTTAGGTTTCCTC

NPRL_cont02046a F: AGCAACAACTCAACCTCAGATGAA 5 182–340 0.675

R: TGGTTCTTTGTTGTCAATTCTTGG

NPRL_cont02343a F: GTTTCTAGTGGTTGCGATGTTTCT 6 182–340 0.620

R: CAACAACCTTGAAGCTCCTACTCT

NPRL_cont02426a F: TAATCTCAGCCGTCCGATTTAGAC 7 127–366 0.667

R: CTACTCACACAGCAACGAACAGC

NPRL_cont02651a F: AATGAAGGAAGGGAAGGAAGGAAG 12 111–466 0.560

R: AAAGAAGAAAGGGGTCCTTGGATT

RM14E11 (1) F: CCATCCAATCAGCAATCACTAA 5 118–414 0.659

R: GAAGAAGAAGAGGAATGCCAGA

RN31E06 (1) F: AGGGACAGCATTTCCAAGATGA 4 127–364 0.652

R: AGGCGGCCGACATGTTTT

Ah1TC11A02 (2) F: AATCGGAATGGCAAGAGACA 7 136–429 0.738

R: AGAGCAAAGGGCGAATCTATG

Ah1TC1D02 (2) F: GATCCAAAATCTCGCCTTGA 5 135–423 0.355

R: GCTGCTCTGCACAACAAGAA

Ah1TC2D06 (2) F: AGGGGGAGTCAAAGGAAAGA 5 101–276 0.690

R: TCACGATCCCTTCTCCTTCA

Ah1TC3H02 (2) F: CTCTCCGCCATCCATGTAAT 10 102–320 0.603

R: ATGGTGAGCTCGACGCTAGT

Ah1TC6E01 (2) F: CTCCCTCGCTTCCTCTTTCT 7 142–427 0.766

R: ACGCATTAACCACACACCAA

Ah1TC7E04 (2) F: GAAGGACCCCATCTATTCAAA 7 283–439 0.709

R: TCCGATTTCTCTCTCTCTCTCTC

Ah1TC9F04 (2) F: CCTAAACAACGACAAACACTCA 13 133–499 0.623

R: AAGCACAACACAGAACCCTAAA

AS1RI1F06 (2) F: TGTCTCTCTTCCTTTCCTTGCT 3 103–408 0.239

R: CCTTTTGCTTCTTTGCTTCC

AS1RN3E10 (2) F: TAGAAGAAGGAGAGGGTGAGAA 4 261–416 0.666

(Continued)

Pre-breeding peanut smut resistance using landraces

PLOS ONE | https://doi.org/10.1371/journal.pone.0211920 February 8, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0211920


Introgression

Allele contributions from the parental lines followed different patterns in the three crosses ana-

lyzed. Results showed that the number of PSA from the susceptible (P1) and resistant (P2)

parents was similar (16 and 18) in cross JS31411 (I) (Fig 5, Table 4). However, in crosses

JS34212 (II) and JS35112 (III) the number of PSA derived from the resistant parent (I0349)

was approximately one order of magnitude lower (6 and 4 for crosses JS34212 (II) and JS35112

(III), respectively) than those from the susceptible parents (61 and 71, for crosses JS34212 (II)

and JS35112 (III), respectively) (Table 4). BLAST analysis of the sequences containing SSRs

Table 3. (Continued)

Marker Sequence 5’! 3’ No. of alleles Amplicon size (bp) PIC

R: CTAAGATGGTGGTGGGAATTA

gi-30419832 (2) F: GCCACTTTATTCTAAGCACTCC 3 205–360 0.142

R: AAGAGACCACACGCTCACA

Ah-202 (3) F: AATTGAGGGTGCTCTTCAGCC 4 208–307 0.525

R: ATGAGGCTGGGGTTGAGAAGAT

pPGPseq2E6R (4) F: CCTGGGCTGGGGTATTATTT 2 119–137 0.429

R: GCACACCATGGCTCAGTTATT

Indel-016 (5) F: TCCTCATCAGGAACTGGGATA 5 176–348 0.498

R: TGCAGCAATAGGACTTCTGG

Indel-030 (5) F: TTGAAGGCAGAGGAGGTAGC 4 125–266 0.146

R: GAAAGGAACATTGAACTAAATTTTGC

Indel-046 (5) F: TGAACTCGAGCGAACATCAC 6 106–484 0.344

R: TTTGTGCTTTGGCACCATTA

https://doi.org/10.1371/journal.pone.0211920.t003

Table 4. Summary of molecular marker analysis for each of the crosses. P1: susceptible parent; P2: resistant parent. Parent specific alleles (PSA) are alleles present in

only one of the parents. Shared alleles: are alleles present in both parents and in all their progeny. PSA in progeny: is the average number of alleles present in each individual

progeny that originated either from parent P1 or P2 (exclusively).

Cross Loci Parent specific

alleles (PSA)

Total

alleles

Shared

alleles

Average PSA in

the RILs

Chromosomal location for the alleles of P2 based on BLAST to the A.

duranensis (A) and A. ipaënsis (B) genome assemblies

JS31411 (I) 52 180 68

P1

(Guasu)

46 16 (10 to 21)

P2

(I0322)

41 18 (14 to 20) A01/B03, A04, A05/B05, A08, A10, A10/B10, B07, B08, B10

34 (26 to 40)

JS34212 (II) 45 217 22

P1

(Granol.)

96 61 (57 to 64)

P2

(I0349)

88 6 (3 to 10) A06, A10, B07, B08, B10

67 (63 to 72)

JS35112

(III)

47 226 25

P1

(I1014)

102 71 (66 to 76)

P2

(I0349)

89 A02, A02/B02 A04, A06, A08, A09/B09, A10, B08, B10

75 (71 to 80)

https://doi.org/10.1371/journal.pone.0211920.t004
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Fig 4. 3D-Principal Coordinate Analysis (3D-PCoA) of genetic distances calculated for parents and progeny of three peanut crosses:

JS31411 (I), JS34212 (II) and JS35112 (III) at 52, 45 and 47 loci, respectively. Total number of alleles observed: 180, 217 and 226 for

cross JS31411 (I), JS34212 (II) and JS35112 (III), respectively.

https://doi.org/10.1371/journal.pone.0211920.g004
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and InDels against the cultivated peanut v. Tifrunner (A. hypogaea) revealed several genomic

regions having been introgressed from the resistant parents in all three crosses. The intro-

gressed fragments were broadly distributed across 15 of the 20 chromosomes, with 5 to 10

chromosomes from the resistant parents being present in the progenies (Fig 5, Table 4, S2

Table, S3 Table). Crosses JS34212 (II) and JS35112 (III) had the lowest number of alleles from

the resistant parent (I0349). To graphically represent the level of recombination, PSAs from

Fig 5. Percentage of parent-specific alleles (PSA) contributed to each of the progeny in three crosses between

smut susceptible and resistant peanut plants. Dark blue: corresponds to alleles contributed by the susceptible parent,

Light-blue: corresponds to alleles from the resistant parent in each cross.

https://doi.org/10.1371/journal.pone.0211920.g005
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susceptible and resistant parents were plotted as a percentage of total PSAs per individual,

light-blue areas represent introgression from resistant parents (Fig 5). This shows that in the

first cross both parents contributed similar number of PSAs to the progeny, whereas in crosses

II and III, the PSA contribution from the resistant parent was an order of magnitude smaller

than the contribution from the susceptible parent, Fig 5. When tested for marker trait associa-

tion only one marker (cont01277a) was significantly associated (P� 0.01) with both incidence

and DI traits in two of the three crosses, JS31411 (I) and JS35112 (III). The presence of the

allele (386 and 445, respectively) was associated with increased susceptibility to pod infection,

and explained between 40% and 64% of the trait variation (S4 Table).

Discussion

This is the first report of peanut smut genetic resistance identified in peanut landraces and its

introgression into elite peanut cultivars. A multi-year phenotyping of three crosses between

resistant landraces and susceptible elite cultivars, combined with simple-sequence repeat

(SSR) and Insertion/Deletion (InDel) genotyping provided evidence of genetic introgression

from the resistant germplasm.

Reliable and repeatable phenotyping remains the key to the success of any crop improve-

ment program whether following conventional or molecular breeding approach. In this study,

the evaluation of five parental lines and 53 derived RILs in an environment with high inocu-

lum pressure allowed the detection of several inbred lines with high degree of resistance and

stability over three growing seasons. Despite the environmental changes, much warmer the

first year and drier on the third, our results indicated high heritability. The genetic basis under-

lying smut resistance has not yet been determined. However, the average heritability (h2) esti-

mates observed here show a significant genetic effect and suggests major gene effects for the

trait. High heritability has been previously reported in peanut soil-borne diseases such as cylin-

drocladium black rot (CBR) caused by Cylindrocladium crotalariae [49].

The presence of transgressive segregation further suggests minor genetic effects conferring

both qualitative and quantitative resistance. Transgressive segregation for disease resistance

has been extensively documented in wild and cultivated peanut germplasm. Recent studies

include rust [50], TSWV [51, 52], and late leaf spot [53]. From a breeding perspective, the

occurrence of transgressive phenotypes in advanced generations of a self-pollinated crop such

as peanut is key to the improvement of resistance.

Genotyping of the RILs and corresponding parental lines provided substantial evidence of

genetic recombination in all three crosses. Factors such as small population size, segregation

distortion, and/or SSR/InDel marker ascertainment bias might explain the relatively low num-

ber of PSA from the resistant parent (I0349) observed in crosses JS34212 (II) and JS35112 (III).

Overall similar level of transferability, 36% (134 out of 373) was observed when the set of SSR/

InDel markers used here was tested on 20 wild peanut species of section Arachis, Erectoides,

Heteranthae, Procumbentes and Rhizomatosae [31]. Parent specific alleles (PSA) from micro-

satellites have been used to demonstrate introgression in crosses between Triticum aestivum ×
Aegilops speltoides [54]. In this study, out of 84 markers that showed PSAs, only seven showed

evidence of introgression [54]. Evaluating presence or absence of alleles/amplicons in micro-

satellites has been used in peanut crosses with synthetic amphidiploids to demonstrate intro-

gression of resistant genes [55].

This study further demonstrates the benefits of landraces as a source and a pathway to

broaden the genetic base for smut resistance in elite cultivars. With a higher marker density,

the advanced inbred lines used in this study are an excellent genetic material for future

marker-trait associations.
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