40 research outputs found

    Changing climate both increases and decreases European river floods

    Get PDF
    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results\u2014arising from the most complete database of European flooding so far\u2014suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Developmental asynchrony and onset of incubation among passerine birds in a mountain birch forest of Swedish Lapland

    No full text
    The onset of incubation and the developmental asynchrony (presumably equivalent to the ensuing hatching spread) were investigated by transilluminating and photographing egg clutches of 14 passerine species in a mountain birch forest of Swedish Lapland. By comparing the visible developmental stages in the eggs (state of yolk swelling, appearance of the embryo and extra-embryonic membranes) with stages of known age obtained from artificially incubated eggs, the time interval between the youngest and oldest stages in each clutch was estimated. Most clutches were asynchronous. The degree of asynchrony ranged from 0.5 to about 2.0 days, with the majority of values ranging between 1 .0 and 1 .5 days. The pattern of developmental spread among the eggs indicated that a pronounced increase in incubation intensity occurred after the penultimate egg was laid or one day earlier. A minority of theclutches showed developmental synchrony. These were significantly more frequent in the coldest and most rainy of the investigated seasons

    Small changes in timing of breeding among subarctic passerines over a 32-year period

    No full text
    Many bird populations in temperate regions have advanced their timing of breeding in response to a warming climate in recent decades. However, long-term trends in temperature differ geographically and between seasons, and so do responses of local breeding populations. Data on breeding bird phenology from subarctic and arctic passerine populations are scarce, and relatively little data has been recorded in open-nesting species. We investigated the timing of breeding and its relationship to spring temperature of 14 mainly open-nesting passerine species in subarctic Swedish Lapland over a period of 32 years (1984–2015). We estimated timing of breeding from the progress of post-juvenile moult in mist-netted birds, a new method exploring the fact that the progress of post-juvenile moult correlates with age. Although there was a numerical tendency for earlier breeding in most species (on average −0.09 days/year), changes were statistically significant in only three species (by −0.16 to −0.23 days/year). These figures are relatively low compared with what has been found in other long-term studies but are similar to a few other studies in subarctic areas. Generally, annual hatching dates were negatively correlated with mean temperature in May. This correlation was stronger in long-distance than in short-distance migrants. Although annual temperatures at high northern latitudes have increased over recent decades, there was no long-term increase in mean temperature in May over the study period at this subarctic site. This is probably the main reason why there were only small long-term changes in hatching dates

    Evaluation of Diffuse Pollution Model Applications in EUROHARP Catchments with Limited Data

    No full text
    The application of diffuse pollution models included in EUROHARP encompassed varying levels of parameterisation and approaches to the preparation of input data depending on the model and modelling team involved. Modellers consistently faced important decisions in relation to data interpretation, especially in those catchments with unfamiliar physical or climatic characteristics, where catchment conditions were beyond the range for which a particular model was originally developed, or where only limited input data were available. In addition to a broad discussion of data issues, this paper compares the performance of the four sub-annual output models tested in EUROHARP (EveNFlow, NL-CAT, SWAT and TRK) in three test catchments without the modelling teams having sight of measured flow and nitrate concentration data. Model performance in this ¿¿blind test¿¿ indicate that the range of predictions generated by any individual models pre and post calibration exceed the differences between the estimates yielded by all four models. Comparison of Analysis of Variance (ANOVA) statistics for simulated and observed flow, concentration and loads underscores the benefits of calibration for these intermediate and complex model formulations. Interpretation of input data (e.g. rainfall interpolation method and pedotransfer functions selected) appeared equally (or more) important than process representation. In the absence of calibration data, modeller unfamiliarity with a particular catchment and its environmental processes sometimes resulted in questionable assumptions and input errors which highlight the problems facing modellers charged with implementing policies under the Water Framework Directive (2000/60/EC) in poorly monitored catchments. Catchment data owners and modellers must therefore work more closely given that the output from diffuse pollution models is clearly modeller-limited as well as model-limited.JRC.H.5-Rural, water and ecosystem resource

    Subannual Models for Catchment Management: Evaluating Model Performance on Three European Catchments

    No full text
    Models¿ abilities to predict nutrient losses at subannual timesteps is highly significant for evaluating policy measures, as it enables trends and the frequency of exceedance of water quality thresholds to be predicted. Subannual predictions also permit assessments of seasonality in nutrient concentrations, which are necessary to determine susceptibility to eutrophic conditions and the impact of management practices on water quality. Predictions of subannual concentrations are pertinent to EC Directives, whereas load estimates are relevant to the 50% target reduction in nutrient loading to the maritime area under OSPAR. This article considers the ability of four models (ranging from conceptual to fully mechanistic), to predict river flows, concentrations and loads of nitrogen and phosphorus on a subannual basis in catchments in Norway, England, and Italy. Results demonstrate that model performance deemed satisfactory on an annual basis may conceal considerable divergence in performance when scrutinised on a weekly or monthly basis. In most cases the four models performed satisfactorily, and mismatches between measurements and model predictions were primarily ascribed to the limitations in input data (soils in the Norwegian catchment; weather in the Italian catchment). However, results identified limitations in model conceptualisation associated with the damping and lagging effect of a large lake leading to contrasts in model performance upstream and downstream of this feature in the Norwegian catchment. For SWAT applied to the Norwegian catchment, although flow predictions were reasonable, the large number of parameters requiring identification, and the lack of familiarity with this environment, led to poor predictions of river nutrient concentrations.JRC.H.1-Water Resource

    Description of Nine Nutrient Loss Models: Capabilities and Suitability Based on Their Characteristics

    No full text
    In EUROHARP, an EC Framework V project, which started in 2002 with 21 partners in 17 countries across Europe, a detailed intercomparison of contemporary catchment-scale modelling approaches was undertaken to characterise the relative importance of point and diffuse pollution of nutrients in surface freshwater systems. The study focused on the scientific evaluation of different modelling approaches, which were validated on three core catchments (the Ouse, UK; the Vansjo-Hobøl, Norway; and the Enza, Italy), and the application of each tool to three additional, randomly chosen catchments across Europe. The tools involved differ profoundly in their complexity, level of process representation and data requirements. The tools include simple loading models, statistical, conceptual and empirical model approaches, and physics-based (mechanistic) models. The results of a scientific intercomparison of the characteristics of these different model approaches are described. This includes an analysis of potential strengths and weaknesses of the nutrient models.JRC.H.5-Rural, water and ecosystem resource

    Evaluation of the Difference of Eight Model Applications to Assess Diffuse Annual Nutrient Losses from Agricultural Land

    No full text
    The capability of eight nutrient models to predict annual nutrient losses (nitrogen and phosphorus) at catchment scale have been studied in the EUROHARP project. The methodologies involved in these models differ profoundly in their complexity, level of process representation and data requirements. This evaluation is focused on model performance in three core catchments: the Vansjø-Hobøl (Norway), the Ouse (Yorkshire, UK) and the Enza (Italy). These three different model applications have been evaluated by comparing calculated annual nutrient loads (total N or nitrate and total P), based on observed flow and total nitrogen or nitrate and total phosphorus concentrations, and the annual nutrient loads that were simulated by the eight nutrient models. Four statistics have been applied for this purpose: the root mean squared error (RMSE), the mean absolute error (MAE), the mean error (ME), and Nash¿Sutcliffe¿s model efficiency (NS). The results show that all model approaches can predict the calculated annual discharges. Depending on the observed statistics (RMSE, MAE, ME and NS) the scores of the model application differed, therefore no overall ¿best model¿ could be identified. Although the water and nutrient loads from (sub)catchments can be predicted, the modelled pathways of nutrients within agricultural land and the nutrient losses to surface waters from agricultural land vary among the catchments and among those model approaches which are able to make this distinction.JRC.H.5-Rural, water and ecosystem resource
    corecore