92 research outputs found

    Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland

    Get PDF
    Climate change affects all seasons, but warming is more pronounced in winter than summer at mid- and high latitudes. Winter warming can have profound ecological effects, which are rarely compared to the effects of summer warming, and causal explanations are not well established. We compared mild aboveground infrared warming in winter to warming in summer in a semi-natural, cool-temperate grassland in Germany for four years. Aboveground plant biomass increased following winter warming (+18%) and was unaffected by summer warming. Winter warming affected the composition of the plant community more than summer warming, favoring productive species. Winter warming increased soil respiration more than summer warming. Prolonged growing seasons and changes in plant-community composition accounted for the increased aboveground biomass production. Winter warming stimulated ecological processes, despite causing frost damage to plant roots and microorganisms during an extremely cold period when warming reduced the thermal insulation provided by snow. Future warming beyond such intermittent frosts may therefore further increase the accelerating effects of winter warming on ecological processe

    A new estimate of carbon for Bangladesh forest ecosystems with their spatial distribution and REDD+ implications

    Get PDF
    In tropical developing countries, reducing emissions from deforestation and forest degradation (REDD+) is becoming an important mechanism for conserving forests and protecting biodiversity. A key prerequisite for any successful REDD+ project, however, is obtaining baseline estimates of carbon in forest ecosystems. Using available published data, we provide here a new and more reliable estimate of carbon in Bangladesh forest ecosystems, along with their geo-spatial distribution. Our study reveals great variability in carbon density in different forests and higher carbon stock in the mangrove ecosystems, followed by in hill forests and in inland Sal (Shorea robusta) forests in the country. Due to its coverage, degraded nature, and diverse stakeholder engagement, the hill forests of Bangladesh can be used to obtain maximum REDD+ benefits. Further research on carbon and biodiversity in under-represented forest ecosystems using a commonly accepted protocol is essential for the establishment of successful REDD+ projects and for the protection of the country’s degraded forests and for addressing declining levels of biodiversity

    Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought

    Get PDF
    Abstract Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning

    The use of medicinal plants in health care practices by Rohingya refugees in a degraded forest and conservation area of Bangladesh

    Get PDF
    People in developing countries traditionally rely on plants for their primary healthcare. This dependence is relatively higher in forests in remote areas due to the lack of access to modern health facilities and easy availability of the plant products.We carried out an ethno-medicinal survey in Teknaf Game Reserve (TGR), a heavily degraded forest and conservation area in southern Bangladesh, to explore the diversity of plants used by Rohingya refugees for treating various ailments. The study also documented the traditional utilization, collection and perceptions of medicinal plants by the Rohingyas residing on the edges of this conservation area. We collected primary information through direct observation and by interviewing older respondents using a semi-structured questionnaire. A total of 34 plant species in 28 families were frequently used by the Rohingyas to treat 45 ailments, ranging from simple headaches to highly complex eye and heart diseases. For medicinal preparations and treating various ailments, aboveground plant parts were used more than belowground parts. The collection of medicinal plants was mostly from the TGR. © 2009 Taylor & Francis

    Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses To Reduced Precipitation: Results from A Globally-Coordinated Field Experiment

    Get PDF
    Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze-thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity

    Traits of dominant plant species drive normalized difference vegetation index in grasslands globally

    Get PDF
    Aim: Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non‐exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small‐extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world‐wide. Location: Two thousand nine hundred and forty‐one grassland plots globally. Time period: 2000–2014. Major taxa studied: Vascular plants. Methods: We obtained plot‐based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community‐weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite‐derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. Results: Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities. Main conclusions: Our analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale

    Global patterns of vascular plant alpha diversity

    Get PDF
    Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity

    Nuclear structure of 6Li and high-energy electron scattering

    No full text
    The nuclear charge form factgr from the high-energy elastic electron scattering on 6Li has been calculated from the modified independent-particle shell model (IPSM) wave function. The usual harmonic oscillator type IPSM wave function has been modified by the inclusion of a nucleon-nucleon correlation function which involves extra-core nucleons only. The technique is extremely simple and provides an excellent agreement with the experimental data

    Nuclear shell and cluster models with special reference to Li6.

    No full text
    corecore