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Abstract 

Reduced precipitation treatments often are used in field experiments to explore the effects of 

drought on plant productivity and species composition. However, in seasonally snow-covered 

regions reduced precipitation also reduces snow cover, which can increase soil frost depth, 

decrease minimum soil temperatures and increase soil freeze-thaw cycles. Therefore, in addition 

to the effects of reduced precipitation on plants via drought, freezing damage to overwintering 

plant tissues at or below the soil surface could further affect plant productivity and relative 

species abundances during the growing season. We examined the effects of both reduced rainfall 

(via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily 

grasslands) within the framework of the International Drought Experiment, a coordinated 

distributed experiment.  Plant cover was estimated at the species level and aboveground biomass 

was quantified at the functional group level.  Among sites, we observed a negative correlation 

between the snow removal effect on minimum soil temperature and plant biomass production the 

next growing season. Three sites exhibited significant rain-out shelter effects on plant 

productivity, but there was no correlation among sites between the rain-out shelter effect on 

minimum soil moisture and plant biomass. There was no interaction between snow removal and 

rain-out shelters for plant biomass, although these two factors only exhibited significant effects 

simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it 

decreases minimum soil temperatures, can be an important component of the total effect of 

reduced precipitation on plant productivity. 

 

Keywords: climate, drought, International Drought Experiment, frost, productivity, rain, snow 

cover, winter 



4  
  

  
  

Introduction 

Drought is among the most influential plant stresses globally, and it is anticipated to 

increase in some regions over the next century as a result of climate change (Sheffield and 

Wood, 2008; Dai, 2011, 2013).  Climate warming can contribute to drought by increasing 

evaporative demands/potential evapotranspiration rates, and at the regional level, periods of 

reduced precipitation can be a particularly strong driver of drought conditions (Trenberth et al., 

2014).  Numerous field experiments have been conducted at the plot level within sites to 

examine the effects of reduced precipitation on plant communities via the use of rain-out shelters 

(sensu (Svejcar et al., 1999) and (Yahdjian and Sala, 2002).  Although severe drought inevitably 

decreases plant productivity (Breshears et al., 2005; Ciais et al., 2005; Allen et al., 2010), 

reduced precipitation per se typically has site-specific and at times apparently idiosyncratic 

results, due in part to differences in plant community composition, soil type and treatment 

intensity (Skinner et al., 2004; English et al., 2005; Carlyle et al., 2014).  Rain-out shelter effects 

also can be highly contingent on the ambient weather conditions over the course of study 

(Kreyling et al., 2017).   

A recent meta-analysis demonstrated that aboveground plant productivity is generally 

more sensitive to increases in precipitation than to reductions, with little variation in the effects 

of reductions across large-scale precipitation and temperature gradients (Wilcox et al., 2017). 

While meta-analyses can be useful for synthesizing information and identifying broad patterns 

across multiple sites, they are limited by often having to integrate data collected using different 

methods, and in cases where they rely primarily on published data they can be biased against the 

inclusion of null results (Hillebrand and Cardinale, 2010; Whittaker, 2010; Harrison, 2011).  To 

address these concerns, it has been suggested that globally-coordinated distributed experiments 
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should be organized to address major questions in ecology (Fraser et al., 2013).  This approach 

has been successfully implemented to examine, for example, climate warming in the Arctic 

(ITEX; (Henry and Molau, 1997), the effects of nutrient enrichment and grazing (NutNet; (Borer 

et al., 2014) and plant diversity-productivity relationships (HerbDivNet; (Fraser et al., 2014).  

More recently, the International Drought Experiment (IDE) has been initiated to examine 

drought effects across a range of sites globally using rain-out shelters (Knapp et al., 2017). 

In seasonally snow-covered regions, reduced precipitation also can reduce snow cover.  

The latter can lead to increased soil frost depth, decreased minimum soil temperatures and an 

increase in the frequency of soil freeze-thaw cycles, even when it is coupled with increases in 

mean annual air temperatures (Henry, 2008), resulting in the apparent paradox of colder soils in 

a warmer world (Groffman et al., 2001).  Therefore, in addition to the effects of reduced 

precipitation on plant productivity via drought, reduced snow cover resulting from decreased 

winter precipitation can increase freezing damage to overwintering plant tissues at or below the 

soil surface (Tierney et al., 2001; Gaul et al., 2008; Comerford et al., 2013; Campbell et al., 

2014), further affecting plant productivity and relative species abundances (Kreyling et al., 

2012a; Vankoughnett and Henry, 2014).  In addition to plant freezing damage, plants can 

respond to freezing indirectly via changes in soil microorganisms and nutrient availability 

(Henry, 2007; Blankinship and Hart, 2012), soil aggregates (Freppaz et al., 2008) or soil fauna 

(Templer et al., 2012).  Decreased snow cover also can affect plant growth during the subsequent 

growing season by altering soil water dynamics (Iwata et al., 2010) and spring phenology 

(Dunne et al., 2003; Huelber et al., 2006; Wipf et al., 2006; Venn and Morgan, 2007; Natali et 

al., 2012).   
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Although plant frost and drought stress typically occur in different seasons, plant stress 

tolerance can be modified by prior exposure to a different stress over the time scale of months 

(Kreyling et al., 2012b; Kreyling et al., 2012c; Kong and Henry, 2016), due to the phenomenon 

described as stress memory or cross acclimation (Walter et al., 2013).  The latter may be 

explained by the accumulation of protective compounds or transcription factors that upregulate 

genes that confer stress tolerance (Bruce et al., 2007; Walter et al., 2013).  Moreover, in the case 

of prior frost effects on drought stress, when frost damage reduces plant biomass it can result in 

decreased transpirational water losses during the subsequent growing season.      

We examined the effects of both reduced rainfall (via rain-out shelters) and decreased 

snow cover (via snow removal) on plant cover and aboveground biomass at 13 sites globally 

within the framework of the International Drought Experiment, a coordinated distributed 

experiment (Knapp et al., 2017). Snow was removed opportunistically from the beginning until 

the middle of winter to increase soil freezing, and snow removal stopped before the end of winter 

to minimize its effects on spring melt water and spring phenology. Following snow melt, half of 

the snow removal and ambient snow plots were covered with rain-out shelters designed to reduce 

rain throughput at each location by an amount equivalent to a one-in-one hundred year drought, 

and the other half were left as ambient rain controls.  Our primary goal was to assess, across a 

range of sites, the extent to which increased frost caused by reduced snow cover might be an 

important component of the effects of reduced precipitation on plant biomass compared to 

summer drought.  We predicted that snow removal would decrease biomass to the greatest extent 

in the coldest sites.  We also were interested in examining the extent to which the frost and 

drought effects might interact, with the prediction that prior exposure to frost would decrease the 

negative effects of drought on plant biomass.   
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Methods 

Study sites 

Thirteen sites globally (from North America, Europe, Asia and Australia) participated in the 

experiment (Table 1, Fig. 1), and these were primarily characterized by grassland/old field 

vegetation, although a heathland site and the understory of a riparian forest site also were 

included.  Mean January temperatures ranged from -22 to 2 °C, and mean annual precipitation 

ranged from 200 to 1405 mm (Table 1).  Mean annual snowfall ranged from 5 to 194 cm.  For 

each site, the treatments and data collection were conducted over a single year (2014-2015 for 

Bayreuth, ESW, Hardware Ranch, Kernen and Lac du Bois, 2015-2016 for Changling, Golestan, 

Hiddensee, Freiburg, Ordesa, Pineta and Richland, and 2016-2017 for Bogong).  

 Snow removal and rain-out shelter treatments 

Within sites, a minimum of six 3 m × 3 m plots were delineated (Bogong, Freiburg and 

Changling used eight plots, Bayreuth used 10 plots, and Hiddensee used 12 plots), with two 1 m 

× 1 m subplots within the center of each plot; the rain-out shelter and snow removal treatments 

were administered in a split-plot design with snow removal (subplots) nested in rain-out 

sheltering (whole plots; Figure 2).  The 3 m × 3 m plot size was determined based on the plot 

size requirements of the International Drought Experiment (Knapp et al., 2017). Within each 

plot, one sub-plot was assigned randomly to snow removal, and the other left as a control to 

experience ambient snow cover. To minimize disturbance to the soil and plant litter layer, plastic 

netting (with 1 cm gaps in the mesh) was placed over both the snow removal and ambient snow 

sub-plots before the first snowfall.  In addition, soil temperature sensors were placed 2 cm below 

the soil surface in the center of each snow removal and snow control plot. To increase soil frost, 
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snow was removed opportunistically (typically following major snowfall events) with shovels 

and brooms down to the level of the plastic mesh.  However, snow was allowed to accumulate in 

the snow-removal sub-plots in late winter to minimize the treatment effects on growing season 

soil moisture and spring phenology.  The Freiburg site received negligible snow cover and thus 

did not participate in the snow removal component, and the Bogong site also did not contribute 

snow removal data, despite snow being present at the latter.   

After the final snow melt, rain-out shelters were installed over half of the plots at each 

site; each rainout shelter consisted of a metal or wooden frame with angled troughs made of 

transparent plastic to reduce each rainfall event passively by a fixed percentage (sensu (Yahdjian 

and Sala, 2002).  The percent reduction of rain was calculated independently for each site (Table 

1) to achieve a statistically extreme deviation in annual precipitation relative to long-term 

records (i.e. equivalent to that which has occurred 1% of the time historically based on annual 

precipitation amounts - either long-term climatological data or interpolated data - for the past 100 

years for each site; Knapp et al., 2017).  Therefore, although the percentage reduction varied 

among sites, the statistical extremity of drought was comparable across sites. Throughout the 

growing season, soil moisture from 0-15 cm depth was determined at regular intervals for the 

plots at each site either using moisture sensors or gravimetrically.  Neither the Bogong or 

Golestan sites collected soil moisture data, and nor were rainout shelters permitted at the latter 

site.  

Plant cover and biomass 

  In the summer, percent aboveground cover was estimated separately for each species 

rooted within each snow removal and ambient snow sub-plot using a modified Daubenmire 

method (Daubenmire 1959, Bonham et al. 2004), in which cover is estimated to the nearest 1% 
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for each species rooted within the plot. Percent cover also was estimated for woody overstory, 

litter, bare soil, animal diggings/disturbance, and rocks if present.  Within-season sampling 

frequency was adjusted for individual sites based on the phenology of the component species to 

capture the maximum cover of each species.  At the timing of peak biomass, rooted aboveground 

biomass was harvested from the plots and sorted by species and separated into the following six 

categories: 1. previous year’s dead, and current year’s: 2. bryophytes, 3. graminoids (grasses, 

sedges, rushes), 4. legumes, 5. non-leguminous forbs, 6. woody growth. The Lac du Bois (CA) 

site was only able to contribute total aboveground biomass data (i.e. not sorted by functional 

group), and the Golestan (IR) site could only contribute plant cover data.  All biomass was dried 

at 60°C for a minimum of 48 h prior to weighing to the nearest 0.01 g.  For seven sites (Bayreuth 

DE), Changling (CN), ESW (CA), Hardware Ranch (US), Ordesa (ES), Pineta (ES) and 

Richland (US), standing root mass was measured at the timing of the aboveground biomass 

harvest from at least two 2 cm diameter by 15 cm deep soil cores collected from each subplot.  

Statistical analyses 

Too assess the treatment effects on soil temperature and soil moisture , the responses of 

minimum annual temperature, number of freeze-thaw cycles and minimum annual soil water 

content were analysed.  Total aboveground biomass was analysed for the date from each site that 

featured the highest biomass values, and these analyses were followed by analyses of treatment 

effects on the total aboveground biomass for each functional group.  For plant cover, the 

maximum growing season value for each species in each plot was first determined, then summed 

for each plot.  The biomass data were log10-transformed, and the percent cover data were square 

root-transformed, in order to meet the assumption of normality for the subsequent statistical 

analyses.   
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Dependent variable responses to the snow removal and rain-out shelter treatments, along 

with their interaction, were analysed in a nested fashion: first among the replicate plots within 

each site, then among sites.  For within-site analyses, the responses were assessed using split-plot 

analysis of variance (ANOVA), with the understanding that these analyses might be limited by 

low statistical power (i.e. the focus of coordinated distributed experiments is on maximizing the 

number of replicate sites, whereas the workload at each site is minimized to encourage 

widespread participation).  Therefore, marginally significant trends in the data (i.e. P<0.1) were 

noted.  For the among site analyses, two-way ANOVA with site included in the model as a 

random factor revealed no significant interactions between the snow removal and rain-out shelter 

effects for the plant response variables.  Follow-up analyses were therefore performed on the 

snow removal and rain-out shelter effects separately.  Specifically, the log response ratios of the 

biomass responses for each site were regressed against the treatment effects on minimum soil 

temperature, number of soil freeze-thaw cycles (i.e. transitions to below 0 °C then back again), 

minimum soil water content and the percentage of rain blocked by the rain-out shelters.  All 

statistical analyses were performed using JMP® 13 software (SAS Institute Inc., Cary, NC).   

 

Results 

Treatment effects on soil temperature and soil moisture 

Snow removal decreased minimum soil temperature among sites (P < 0.001), but there 

was an interaction between snow removal and site (P < 0.001) resulting from some sites showing 

a strong effect, and others no effect (Table 2).  There also was an interaction (P = 0.002) between 

snow removal and site for the number of soil freeze-thaw cycles, with some sites exhibiting an 
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increase and others a decrease (Table 2).  The rain-out shelters reduced minimum soil water 

content among sites (P = 0.041; Table 2), and there was no significant effect of snow removal on 

post snow-melt soil water content (P = 0.87).      

Plant biomass and cover responses 

Within sites, there were no interactions between snow removal and rain-out shelter 

effects for aboveground biomass or cover (therefore, the snow removal data displayed in the 

figures were pooled over the rainout shelter treatments, and vice versa).  Snow removal reduced 

aboveground biomass for ESW (P = 0.027) and Lac du Bois (P = 0.020), and there was a 

marginally significant aboveground biomass reduction for Changling (P = 0.0745; Fig. 3a).  

These effects were driven by decreases in legumes (ESW; P = 0.017) and grasses (Changling; P 

= 0.020).  Snow removal also reduced total percent cover for Changling (P = 0.020) and 

Golestan (P = 0.007; Fig. 3b), with the effects driven by decreases in grasses (P = 0.02 and P = 

0.034, respectively).  Rain-out shelters reduced aboveground biomass for Kernen (P = 0.007), 

Changling (P = 0.002) and Freiburg (P = 0.04; Fig. 4a). These effects were driven by decreases 

in grasses (Kernen, P = 0.004; Changling, P = 0.02) and forbs (Freiburg, P = 0.031).  Rain-out 

shelters also resulted in a moderately significant increase in aboveground biomass for Lac du 

Bois (P = 0.08; Fig. 4a).  For total percent cover, there was a moderately significant increase 

under rain-out shelters for Lac du Bois (P = 0.078; Fig. 4b), driven by a significant increase in 

legumes (P = 0.048).  Rain-out shelters also resulted in a decrease in forb cover for ESW (P = 

0.013).  Snow removal resulted in a 19% decrease in total root biomass for Changling (P = 

0.011), a marginally significant decrease of 31% for Hardware Ranch (P = 0.068), and a 

marginally significant increase of 92% for Richland (P = 0.051; data not shown).  There also was 
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a marginally significant increase in root biomass of 15% for Changling under rain-out shelters (P 

= 0.059). 

Among sites, the log response ratios of the snow removal effects on aboveground 

biomass were significantly influenced by reduction in minimum soil temperature (P=0.028), and 

this effect was driven by the strong negative biomass responses of the five sites that experienced 

the largest decreases in minimum soil temperature (Fig. 5a).  There was no significant 

relationship between the log response ratios of the aboveground biomass response to snow 

removal and the number of soil freeze-thaw cycles (P = 0.91), minimum soil temperature (P = 

0.32), January air temperature (P = 0.30) or annual snowfall (P = 0.27).  The among site 

relationship between the log response ratios of the rain-out shelter effects on both aboveground 

biomass and reduction in minimum soil moisture was not significant (P = 0.38; Fig. 5b), and 

likewise, the log response ratios of the rain-out shelter effects were not significantly correlated 

with the percentage of precipitation blocked among sites (P=0.18).  However, there was a 

marginally significant negative correlation among sites between the absolute magnitudes of the 

rain-out shelter effects on biomass and mean annual precipitation (P=0.07; i.e. the driest sites in 

Fig. 4a featured the largest magnitude responses). 

 

Discussion 

Our results revealed that soil frost effects on plant biomass resulting from reduced snow 

cover indeed can be substantial relative to the effects of reduced spring and summer 

precipitation.   These effects were most apparent for sites that experienced a meaningful 

reduction in minimum soil temperature in response to snow removal (in this case, 2 °C or greater 
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at 2 cm soil depth).  The severity of winter temperature on its own was not a reliable predictor of 

snow removal effects on aboveground biomass, in that there was no snow removal effect for 

Kernen, a relatively cold site, whereas snow removal affected biomass or cover for Lac du Bois 

and Golestan, respectively, which experience much milder winters in comparison (although 

Kernen experienced unusually low snow cover in the ambient plots during the study, which may 

have diminished its snow removal effect).  Similarly, the total number of soil freeze-thaw cycles 

was not a reliable predictor of snow removal effects on aboveground biomass.  The latter was not 

surprising given that the freeze-thaw cycles for many sites were of low amplitude (i.e. dropping 

only a degree or so below freezing), which often produces little damage (Henry, 2007); 

nevertheless, the number of freeze-thaw cycles can be influential when freezing is consistently 

more intense (Elliott and Henry, 2009), and the timing and duration of soil frost also can have 

important consequences for plant biomass responses (Malyshev and Henry, 2012).  With respect 

to functional groups, legumes can be particularly susceptible to frost (Joseph and Henry, 2008), 

and declines in this functional group largely explained the snow removal effect at one site 

(ESW), but at other sites, declines in grass biomass and cover were responsible for the total 

biomass declines in response to snow removal.  

While a substantial percentage of spring and summer precipitation (20 to 70%, but 

typically 40%) was blocked by the rain-out shelters, there were only significant reductions in 

aboveground biomass for three sites.  As discussed previously, the effectiveness of rain-out 

shelters is contingent on the ambient weather over the course of study (Kreyling et al., 2017), 

and we anticipated minimal rain-out shelter effects may be observed in very dry or very wet 

years for a given site.  For example, rain-out shelters should have no effect in the absence of rain, 

whereas a rain-out shelter plot may receive abundant rain in a very wet year; both scenarios 



14  
  

  
  

might not be expected to produce large treatment effects on plant biomass.  We did not observe a 

clear relationship between rain-out shelter effects on biomass and ambient growing season 

precipitation (relative to the climate normals), and one site (Kernen) that experienced extremely 

low rainfall exhibited a significant rain-out shelter effect. Likewise, the effect of the rain-out 

shelters on minimum soil moisture was a poor predictor of the aboveground biomass responses.  

However, it has been demonstrated previously that apart from total precipitation, the timing and 

size of individual rainfall events can play an important role in plant biomass responses (Fay et 

al., 2008; Kulmatiski and Beard, 2013).  Moreover, the marginally significant negative 

correlation among sites between the absolute rain-out shelter effect size on biomass and mean 

annual precipitation indicated that biomass was generally the most responsive to rain-out shelter 

treatment in the driest sites, although the direction of the biomass response was not consistent.  

In addition to blocking rain, the rain-out shelter infrastructure blocks solar radiation and can 

affect plot temperature, but such infrastructure artifacts have been documented to be minimal 

(e.g. no detectable change in solar radiation for 30% rainfall interception, and <10% decrease in 

solar radiation for 80% rainfall interception; Yahdjian and Sala, 2002).   

The drought treatment in our experiment was limited to one year, and greater effects on 

plant biomass can occur in response to multiple years of drought (Hoover et al., 2014).  In 

addition, as addressed above, aboveground plant productivity appears to be more sensitive to 

increases in precipitation than to reductions (Wilcox et al., 2017), and while some northern 

regions are predicted to experience increased drought over the next century, others are predicted 

to experience increases in precipitation (IPCC, 2014).  Therefore, better understanding of the 

interaction between increased summer and winter precipitation also remains an area of research 
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needs in predicting plant climate change responses. Moreover, a better understanding of 

precipitation responses is also required for non-herbaceous systems. 

One aspect of the plant responses to decreased precipitation that we were only able to 

document superficially was the root response.  Over half of the sites collected root data, but this 

was limited to small-volume samples of standing biomass at a fixed depth, whereas changes in 

rooting depth and root turnover are often important facets of root responses to drought (Xu et al., 

2015).  The collection of the latter root data can be difficult to implement in a coordinated 

distributed experiment, given that such experiments are geared towards ease of sampling as a 

means of promoting widespread participation (Fraser et al., 2013).  However, the collection of 

such data in the context of a coordinated distributed experiment would likely be of great value; 

despite the general finding that relative allocation of biomass to roots increases in response to 

severe drought, root responses to drought remain highly variable (Eziz et al., 2017). Furthermore, 

variability among experiments, particularly with respect to relative water availability, may be 

important in explaining the observed variation among studies (Poorter et al., 2012).       

Interactions between frost and drought have been observed experimentally at the level of 

individual plants (Kreyling et al., 2012b; Kreyling et al., 2012c), and the secondary goal of our 

study was to explore frost-drought interactions at the plant community level.  While none of 

these interactions were significant, there was only one site (Changling) where both significant 

frost and drought effects occurred.  Given that the main effects of frost and drought were not 

significant for the remainder of the sites, it remains inconclusive based on our results whether 

frost-drought interactions may be important at the community level.  Nevertheless, one insight 

gained from our study is that it may be unlikely for both of these stressors to coincide for a given 

site within the same year.  There are of course facets of decreased winter precipitation other than 
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increased soil frost (e.g. advanced spring phenology and decreased growing season soil moisture 

(Wipf et al., 2006; Iwata et al., 2010; Natali et al., 2012)) that could promote interactions 

between reduced winter and summer precipitation, but as described at the outset, in our study we 

specifically attempted to isolate the frost effect from these other effects.   

Conclusions 

 Our study demonstrated that frost effects resulting from reduced winter precipitation are a 

potentially important component of the total annual effect of reduced precipitation on plant 

biomass, and these effects are not simply restricted to the coldest sites.  Although our attempt to 

examine interactions between frost and drought was impeded by a lack of simultaneous frost and 

drought effects within sites, the result that many sites did not show significant responses to snow 

removal or rain-out shelters is in itself informative in the context of publication bias and meta-

analysis; not only would the non-significant results in the current study have been difficult to 

publish on their own, but the coordinated distributed experiment encouraged participation by 

sites that otherwise would not have attempted snow removal or rain-out shelter experiments (e.g. 

snow manipulation experiments are typically not conducted at warmer sites).  Moving forward, 

the broader inclusion of sites in coordinated field experiments can clearly impart greater 

generality and improved perspective in climate change research.  
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Table 2. Mean and standard error of minimum winter soil temperature and number of soil freeze-thaw cycles (ambient vs. snow removal
 plots) and minimum growign season soil moisture (ambient vs. rain-out shelter plots). 

Site
mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.)

Hardware Ranch (US) -5.4 (0.4) -7.8 (0.3) 40 (6) 45 (9) 8.4 (0.9) 7.4 (0.2)
Changling (CN) -12.1 (0.7) -15.3 (0.2) 14 (2) 15 (2) 8.7 (3.3) 10.1 (3.1)
Kernen (CA) -12.1 (0.4) -12.2 (0.4) 16 (4) 10 (6) 7.5 (2.1) 5.4 (1.8)
Richland (US) -1.8 (0.2) -6.6 (0.9) 18 (3) 27 (11) 17.7 (1.8) 16 (2.9)
ESW (CA) -3 (0.2) -11.7 (0.8) 32 (7) 24 (2) 17.7 (0.5) 12.4 (0.8)
Bayreuth (DE) -2.2 - -2.3 - 21 - 10 - 16.8 (2.5) 13.4 (1.2)
Lac du Bois (CA) -1.9 (0.2) -5.5 (0.3) - - - - 5.5 (2.8) 3.8 (4.2)
Bogong (AU) - - - - - - - - - - - -
Freiburg (DE) - - - - - - - - 7.6 (1.3) 5.3 (1.7)
Pineta (ES) -1.9 (0.2) -2.4 (0.2) 20 (4) 52 (5) 38 (1.8) 38.2 (1.4)
Ordesa (ES) -2.9 (0.3) -2.8 (0.2) 27 (0) 33 (10) 10.4 (0.7) 10 (0.3)
Hiddensee (DE) -1.2 (0.3) -0.9 (0.2) 3.4 (0.6) 2.5 (0.5) 8.1 (0.7) 7.1 (0.6)
Golestan (IR) -1.3 (0.8) -3 (1.0) 8 (6) 7 (2) - - - -
Significant ANOVA treatment effects: minimum soil temperature - site (P<0.001), site×snow removal (P<0.001); number of freeze-
thaw cycles - site×snow removal (P=0.002); minimum soil moisture - rainout shelter (P=0.041).

Minimum soil temperature (°C) Number of freeze-thaw cycles Minimum soil moisture (%)
ambient snow snow removal ambient snow snow removal ambient rain rainout shelter
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Figure captions: 

Fig. 1. Study site locations (black points). World map adapted from 

https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-

noborders.png, Public Domain.  

 

Fig. 2. Experimental design for a site with three rain-out shelters and three ambient rain plots.  

The snow removal subplots were nested randomly within the rain-out shelter and ambient rain 

plots.  

 

Fig. 3. Mean a) aboveground biomass and b) total percent cover (i.e. total of all species cover 

values) for the ambient snow and snow removal sub-plots.  Data pooled over the rain-out shelter 

treatments, and error bars denote standard error.  Sites are ordered on the x- axis (left to right) 

from coldest to warmest mean January air temperature. Asterisks indicate significant differences 

(P<0.05) within sites, and crosses denote a marginally significant difference (P<0.1). 

 

Fig. 4. Mean a) aboveground biomass and b) total percent cover (i.e. total of all species cover 

values) for the ambient rain and rain-out shelter plots.  Data pooled over the snow removal 

treatments, and error bars denote standard error.  Sites are ordered on the x- axis (left to right) 

from lowest to highest mean annual precipitation.  Asterisks indicate significant differences 

(P<0.05) within sites, and crosses denote a marginally significant difference (P<0.1).  
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Fig. 5. a) The snow removal effect on aboveground biomass (log response ratio) for each site as 

a function of the snow removal reduction of minimum soil temperature.  b) The rain-out shelter 

effect on aboveground biomass (log response ratio) for each site as a function of the rain-out 

shelter reduction of minimum soil moisture. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4  

  

La
c  d
u  B
ois
  (C
A)

Ke
rne
n  (
CA
)

Ch
an
gli
ng
  (C
N)

Ha
rdw
are
  R
an
ch
  (U
S)

Hid
de
ns
ee
  (D
E)

Ba
yre
uth
  (D
E)

Ric
hla
nd
  (U
S)

Fre
ibu
rg  
(D
E)

ES
W
  (C
A)

Or
de
sa
  (E
S)

Pin
eta
  (E
S)

Bo
go
ng
  (A
U)

sq
ua
re
  ro
ot
  (t
ot
al
  o
f  p
er
ce
nt
  c
ov
er
  v
al
ue
s)

2

4

6

8

10

12

14

lo
g 1
0  (
ab
ov
eg
ro
un
d  
bi
om
as
s  
in
  g
  d
w
  m

2 )

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

ambient  rain
rainout  shelter

*

+

*

*

+

a)

b)



30  
  

  
  

Fig. 5 
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