549 research outputs found

    CO(1-0) line imaging of massive star-forming disc galaxies at z=1.5-2.2

    Get PDF
    We present detections of the CO(J= 1-0) emission line in a sample of four massive star-forming galaxies at z~1.5-2.2 obtained with the Karl G. Jansky Very Large Array (VLA). Combining these observations with previous CO(2-1) and CO(3-2) detections of these galaxies, we study the excitation properties of the molecular gas in our sample sources. We find an average line brightness temperature ratios of R_{21}=0.70+\-0.16 and R_{31}=0.50+\-0.29, based on measurements for three and two galaxies, respectively. These results provide additional support to previous indications of sub-thermal gas excitation for the CO(3-2) line with a typically assumed line ratio R_{31}~0.5. For one of our targets, BzK-21000, we present spatially resolved CO line maps. At the resolution of 0.18'' (1.5 kpc), most of the emission is resolved out except for some clumpy structure. From this, we attempt to identify molecular gas clumps in the data cube, finding 4 possible candidates. We estimate that <40 % of the molecular gas is confined to giant clumps (~1.5 kpc in size), and thus most of the gas could be distributed in small fainter clouds or in fairly diffuse extended regions of lower brightness temperatures than our sensitivity limit

    Imaging the molecular gas in a submm galaxy at z = 4.05: cold mode accretion or a major merger?

    Get PDF
    We present a high resolution (down to 0.18"), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 \times 10^{11} (\alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2" resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 \times 10^{11} \msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1" from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATEDComment: 33 pages, 8 figures, submitted to the ApJ, aas latex forma

    Coronaviruses and Australian bats: a review in the midst of a pandemic

    Get PDF
    Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health

    Quest for COSMOS Submillimeter Galaxy Counterparts using CARMA and VLA: Identifying Three High-redshift Starburst Galaxies

    Get PDF
    We report on interferometric observations at 1.3 mm at 2"-3" resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F_(1mm) > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ~10"-30", resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (~2") mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ≳ 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9^(+0.9)_(–0.5), and ~4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ≳ 1000 M_☉ yr^(–1) and IR luminosities of ~10^(13) L_☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ~ 2 and today's passive galaxies

    A molecular line scan in the Hubble Deep Field North

    Get PDF
    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 μJy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era

    COSBO: The MAMBO 1.2 Millimeter Imaging Survey of the COSMOS Field

    Get PDF
    The inner 20 × 20 arcmin^2 of the COSMOS field was imaged at 250 GHz (1.2 mm) to an rms noise level of ~1 mJy per 11" beam using the Max-Planck Millimeter Bolometer Array (MAMBO-2) at the IRAM 30 m telescope. We detect 15 sources at significance between 4 and 7 σ, 11 of which are also detected at 1.4 GHz with the VLA with a flux density >24 μJy (3 σ). We identify 12 more lower significance mm sources based on their association with faint radio sources. We present the multifrequency identifications of the MAMBO sources, including VLA radio flux densities, optical and near-infrared identifications, as well as the XMM-Newton X-ray detection for two of the mm sources. We compare radio and optical photometric redshifts and briefly describe the host galaxy morphologies. The colors of the identified optical counterparts suggest most of them to be high-redshift (z ~ 2-3) star-forming galaxies. At least three sources appear lensed by a foreground galaxy. We highlight some MAMBO sources that do not show obvious radio counterparts. These sources could be dusty starburst galaxies at redshifts >3.5. The 250 GHz source areal density in the COSMOS field is comparable to that seen in other deep mm fields

    ALMA observations of atomic carbon in z~4 dusty star-forming galaxies

    Get PDF
    We present ALMA [CI](101-0) (rest frequency 492 GHz) observations for a sample of 13 strongly-lensed dusty star-forming galaxies originally discovered at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these new data with available [CI] observations from the literature, allowing a study of the ISM properties of 30\sim 30 extreme dusty star-forming galaxies spanning a redshift range 2<z<52 < z < 5. Using the [CI] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6×10106.6 \times 10^{10} M_{\odot}. This is in tension with gas masses derived via low-JJ 12^{12}CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2_2 conversion factor for our sample of αCO2.5\alpha_{\rm CO} \sim 2.5 and a gas-to-dust ratio 200\sim200, or (b) an high carbon abundance XCI7×105X_{\rm CI} \sim 7\times10^{-5}. Using observations of a range of additional atomic and molecular lines (including [CI], [CII], and multiple transitions of CO), we use a modern Photodissociation Region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength, and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterised by dense gas permeated by strong UV fields. We note that previous efforts to characterise PDR regions in DSFGs may have significantly underestimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA

    Evaluation of the suitability of the Waterloo Membrane Sampler for sample preconcentration before compound-specific isotope analysis

    Get PDF
    Compound-specific isotope analysis (CSIA) has been used extensively for fingerprinting applications and for the evaluation of the degradation processes in organic contaminant studies in groundwater. Recently, the potential applications of CSIA in unsaturated and vapour intrusion studies have been explored. A key challenge in these studies is the development of analytical protocols for CSIA that can handle the very low concentrations of organic compounds typically found in the unsaturated zone and indoor samples. The objective of this research was to evaluate the applicability of the Waterloo Membrane Sampler (WMS) for CSIA, with intended applications in the unsaturated zone and in vapour intrusion studies. Tests were performed to evaluate isotope effects associated with sorption and desorption of the analytes under active sampling and passive sampling conditions. A standard gas mixture containing three model analytes, hexane, benzene and trichloroethene, was used in the experiments. Tests were designed to evaluate the isotope effect as a function of the time of exposure (3 to 192 hours), amount of analytes sorbed, and exposure temperature (25°C and 12°C). The results obtained in all studies showed very good reproducibility with standard deviations within the accepted analytical error of ±0.5 ‰. The data also showed that the δ13C values of the analytes collected by passive sampling were more depleted than the values obtained by active sampling. However, the degree of fractionation, ranging from 0.4 to 1.4 ‰, was practically constant and independent of the sampling time, mass adsorbed and temperature in the ranges of variables studied. The lowest concentrations that could be detected were 0.65mg/m3for hexane, 0.88mg/m3benzene and 4.38mg/m3for TCE. The method developed was applied in a field study where the results obtained for benzene and toluene collected in the unsaturated zone showed the expected values compared to carbon isotope data obtained for benzene and toluene at the water table. Results obtained in this study confirmed good data reproducibility. This indicates that CSIA coupled with WMS has the potential to become a valuable tool in unsaturated zone studies and in the environmental forensics field

    Mid-infrared Galaxy Morphology from the Spitzer Survey of Stellar Structure in Galaxies (S^4G): The Imprint of the De Vaucouleurs Revised Hubble-Sandage Classification System at 3.6 μm

    Get PDF
    Spitzer Space Telescope Infrared Array Camera imaging provides an opportunity to study all known morphological types of galaxies in the mid-IR at a depth significantly better than ground-based near-infrared and optical images. The goal of this study is to examine the imprint of the de Vaucouleurs classification volume in the 3.6 μm band, which is the best Spitzer waveband for galactic stellar mass morphology owing to its depth and its reddening-free sensitivity mainly to older stars. For this purpose, we have prepared classification images for 207 galaxies from the Spitzer archive, most of which are formally part of the Spitzer Survey of Stellar Structure in Galaxies (S^4G), a Spitzer post-cryogenic ("warm") mission Exploration Science Legacy Program survey of 2331 galaxies closer than 40 Mpc. For the purposes of morphology, the galaxies are interpreted as if the images are blue light, the historical waveband for classical galaxy classification studies. We find that 3.6 μm classifications are well correlated with blue-light classifications, to the point where the essential features of many galaxies look very similar in the two very different wavelength regimes. Drastic differences are found only for the most dusty galaxies. Consistent with a previous study by Eskridge et al., the main difference between blue-light and mid-IR types is an ≈1 stage interval difference for S0/a to Sbc or Sc galaxies, which tend to appear "earlier" in type at 3.6 μm due to the slightly increased prominence of the bulge, the reduced effects of extinction, and the reduced (but not completely eliminated) effect of the extreme population I stellar component. We present an atlas of all of the 207 galaxies analyzed here and bring attention to special features or galaxy types, such as nuclear rings, pseudobulges, flocculent spiral galaxies, I0 galaxies, double-stage and double-variety galaxies, and outer rings, that are particularly distinctive in the mid-IR

    CO excitation of normal star forming galaxies out to z=1.5 as regulated by the properties of their interstellar medium

    Get PDF
    We investigate the CO excitation of normal star forming galaxies at z=1.5 using IRAM PdBI observations of the CO[2-1], CO[3-2] and CO[5-4] transitions for 4 galaxies, and VLA observations of CO[1-0] for 3 of them, measuring reliable line fluxes with S/N>4-7 for individual transitions. While the average CO Spectral Line Energy Distribution (SLED) has a sub-thermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO[5-4] emission is 4 times stronger than assuming MW excitation. This demonstrates the presence of an additional component of more excited, denser and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is however lower than in local (U)LIRGs and high-redshift starbursting SMGs, and appears to correlate closely with the average intensity of the radiation field and with the star formation surface density, but not with SF efficiency (SFE). This suggests that the overall CO excitation is at least indirectly affected by the metallicity of the ISM. The luminosity of the CO[5-4] transition is found to correlate linearly with the bolometric infrared luminosity over 4 orders of magnitudes, with BzK galaxies following the same linear trend as local spirals and (U)LIRGs and high redshift star bursting sub-millimeter galaxies. The CO[5-4] luminosity is thus related to the dense gas, and might be a more convenient way to probe it than standard high--density tracers. We see excitation variations among our sample galaxies, linked to their evolutionary state and clumpiness in optical rest frame images. In one galaxy we see spatially resolved excitation variations, the more highly excited part corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high excitation CO emission in high redshift disk-like galaxies
    corecore