26 research outputs found

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Activation of Rac1 and the p38 Mitogen-activated Protein Kinase Pathway in Response to Arsenic Trioxide *

    No full text
    Arsenic trioxide induces differentiation and apoptosis of malignant cells in vitro and in vivo, but the mechanisms by which such effects occur have not been elucidated. In the present study we provide evidence that arsenic trioxide induces activation of the small G-protein Rac1 and the alpha and beta isoforms of the p38 mitogen-activated protein (MAP) kinase in several leukemia cell lines. Such activation of Rac1 and p38-isoforms results in downstream engagement of the MAP kinase-activated protein kinase-2 and is enhanced by pre-treatment of cells with ascorbic acid. Interestingly, pharmacological inhibition of p38 potentiates arsenic-dependent apoptosis and suppression of growth of leukemia cell lines, suggesting that this signaling cascade negatively regulates induction of antileukemic responses by arsenic trioxide. Consistent with this, overexpression of a dominant-negative p38 mutant (p38betaAGF) enhances the antiproliferative effects of arsenic trioxide on target cells. To further define the relevance of activation of the Rac1/p38 MAP kinase pathway in the induction of arsenic-dependent antileukemic effects, studies were performed using bone marrows from patients with chronic myelogenous leukemia. Arsenic trioxide suppressed the growth of leukemic myeloid (CFU-GM) progenitors from such patients, whereas concomitant pharmacological inhibition of the p38 pathway enhanced its growth-suppressive effects. Altogether, these data provide evidence for a novel function of the p38 MAP kinase pathway, acting as a negative regulator of arsenic trioxide-induced apoptosis and inhibition of malignant cell growth

    Vaccinia Virus Activation of CCR5 Invokes Tyrosine Phosphorylation Signaling Events That Support Virus Replication

    No full text
    Vaccinia virus, a poxvirus, produces structurally distinct forms of virions for which the immediate events following cell entry are ill-defined. We provide evidence that intracellular mature virus (IMV) enters both permissive and nonpermissive T-cell lines and that introduction of CCR5 into nonpermissive mouse fibroblasts or human primary T cells renders the cells permissive for vaccinia replication. Notably, T cells expressing CCR5 in which tyrosine 339 in the intracellular region is replaced by phenylalanine no longer support virus replication or virus-inducible activation of specific host cell signaling effectors IRS-2, Grb2, and Erk1/2. We show that following IMV entry into the cell, the intact but not the tyrosine-deficient CCR5 is rapidly internalized and colocalizes with virus. This colocalization precedes virus-inducible signaling and replication

    Interferon-Dependent Engagement of Eukaryotic Initiation Factor 4B via S6 Kinase (S6K)- and Ribosomal Protein S6K-Mediated Signals▿

    No full text
    Although the roles of Jak-Stat pathways in type I and II interferon (IFN)-dependent transcriptional regulation are well established, the precise mechanisms of mRNA translation for IFN-sensitive genes remain to be defined. We examined the effects of IFNs on the phosphorylation/activation of eukaryotic translation initiation factor 4B (eIF4B). Our data show that eIF4B is phosphorylated on Ser422 during treatment of sensitive cells with alpha IFN (IFN-α) or IFN-γ. Such phosphorylation is regulated, in a cell type-specific manner, by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) and results in enhanced interaction of the protein with eIF3A (p170/eIF3A) and increased associated ATPase activity. Our data also demonstrate that IFN-inducible eIF4B activity and IFN-stimulated gene 15 protein (ISG15) or IFN-γ-inducible chemokine CXCL-10 protein expression are diminished in S6k1/S6k2 double-knockout mouse embryonic fibroblasts. In addition, IFN-α-inducible ISG15 protein expression is blocked by eIF4B or eIF3A knockdown, establishing a requirement for these proteins in mRNA translation/protein expression by IFNs. Importantly, the generation of IFN-dependent growth inhibitory effects on primitive leukemic progenitors is dependent on activation of the S6K/eIF4B or RSK/eIF4B pathway. Taken together, our findings establish critical roles for S6K and RSK in the induction of IFN-dependent biological effects and define a key regulatory role for eIF4B as a common mediator and integrator of IFN-generated signals from these kinases
    corecore