96 research outputs found

    Effects of introduced trout predation on non-diadromous galaxiid fish populations across invaded riverscapes

    Get PDF
    Abstract We assessed the landscape-scale effect of predation pressure from trout on the population integrity and distributions of non-diadromous galaxiids in high-country streams of the South Island, New Zealand. The effects of trout (brown trout, Salmo trutta, and rainbow trout, Oncorhynchus mykiss) on two widespread species, the Canterbury galaxias (Galaxias vulgaris Stokell) and the alpine galaxias (G. paucispondylus Stokell) were assessed. Experiments confirmed that both species were vulnerable to trout predation and that habitat (size and disturbance regime) may be a factor in local co-occurrence. Quantitative electrofishing surveys indicated that G. paucispondylus distributions were less affected by trout than G. vulgaris distributions and that the species’ range was limited by temperature. Trout created demographic sinks for G. vulgaris across most invaded reaches, while refuge populations in streams above barriers to trout acted as demographic sources for this species. G. vulgaris was consistently absent from small, stable stream reaches far from sources, indicating that trout predation pressure and propagule pressure (driven by immigration from sources) interact to drive local G. vulgaris persistence in trout-invaded reaches. Predation pressure is likely to be highest in areas where infrequent flooding allows high densities of large trout (> 150 mm FL) to occur and where there are few refugia for galaxiids. A spatial model was developed to predict exclusion of galaxiids by trout across invaded networks. If used appropriately, the model could be used to find new refuge populations of non-diadromous galaxiids and to aid planning of active rehabilitation of trout-invaded river networks

    Response of the benthic fauna of an urban stream during six years of restoration

    Get PDF
    Okeover Stream flows through the University of Canterbury campus and has been subject to restoration since 1998. While initially spring-fed, its main source of flow is now aquifer water, which has been used for cooling university buildings. Water quality is generally good, but the low-gradient streambed includes substantial amounts of fine inorganic sediment and organic matter including deciduous tree leaves. Restoration activities include riparian plantings, channel shaping, substratum manipulations and additions, the construction of sediment traps and macrophyte management. Thirty aquatic invertebrate taxa (13-19 per year) have been recorded in annual surveys since 2000. Paracalliope fluviatilis (Amphipoda), Copepoda and Oligochaeta were most abundant in all years, whereas Mollusca and Trichoptera always made up <4 % and <2 % of individuals, respectively. Furthermore, cased caddisflies were found only in the two (of four) downstream reaches, whereas Copepoda were predominantly in the upper two reaches where flow was generally slower. Low annual MCI (69-84) and SQMCI (3.5-4.8) values indicated the fauna comprised mainly species that are tolerant of poor water quality or degraded habitat conditions. Our data indicate that the invertebrate fauna has yet to respond positively to the changes in physical habitat and riparian conditions made along Okeover Stream. The introduction of pulses of poor quality water during heavy rainfalls, high levels of siltation, heavy metals in bed sediments, large accumulations of slowly decomposing leaves and an inadequate source of potential colonists may all contribute to the weak response of the invertebrate fauna to restoration activities

    Negative resistance and resilience: biotic mechanisms underpin delayed biological recovery in stream restoration

    Get PDF
    Traditionally, resistance and resilience are associated with good ecological health, often underpinning restoration goals. However, degraded ecosystems can also be highly resistant and resilient, making restoration difficult: degraded communities often become dominated by hyper-tolerant species, preventing recolonization and resulting in low biodiversity and poor eco-system function. Using streams as a model, we undertook a mesocosm experiment to test if degraded community presence hindered biological recovery. We established 12 mesocosms, simulating physically healthy streams. Degraded invertebrate communities were established in half, mimicking the post-restoration scenario of physical recovery without biological recovery. We then introduced a healthy colonist community to all mesocosms, testing if degraded community presence influenced healthy community establishment. Colonists established less readily in degraded community mesocosms, with larger decreases in abundance of sensitive taxa, likely driven by biotic interactions rather than abiotic constraints. Resource depletion by the degraded community likely increased competition, driving priority effects. Colonists left by drifting, but also by accelerating development, reducing time to emergence but sacrificing larger body size. Since degraded community presence prevented colonist establishment, our experiment suggests successful restoration must address both abiotic and biotic factors, especially those that reinforce the ‘negative’ resistance and resilience which perpetuate degraded communities and are typically overlooke

    Single-event leak detection in pipeline using first three resonant responses

    Get PDF
    Hydraulic transients (water hammer waves) can be used to excite a pressurized pipeline, yielding the frequency response diagram (FRD) of the system. The FRD of a pipeline system is useful for condition assessment and fault detection, because it is closely related to the physical properties of the pipeline. Most previous FRD-based leak detection techniques use the sinusoidal leak-induced pattern recorded on the FRD, either shown on the resonant responses or the antiresonant responses. In contrast, the technique reported in the current paper only uses the responses at the first three resonant frequencies to determine the location and size of a leak. The bandwidth of the excitation only needs to be five times that of the fundamental frequency of the tested pipeline, which is much less than the requirement in conventional FRD-based techniques. Sensitivity analysis and numerical simulations are performed to assess the robustness and applicable range of the proposed leak location technique. The proposed leak location technique is verified by both numerical simulations and by using an experimental FRD obtained from a laboratory pipeline. © 2013 American Society of Civil Engineers.Jinzhe Gong, Martin F. Lambert, Angus R. Simpson, and Aaron C. Zecchi

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event

    Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events

    A mixed methods pilot study with a cluster randomized control trial to evaluate the impact of a leadership intervention on guideline implementation in home care nursing

    Get PDF
    Abstract Background Foot ulcers are a significant problem for people with diabetes. Comprehensive assessments of risk factors associated with diabetic foot ulcer are recommended in clinical guidelines to decrease complications such as prolonged healing, gangrene and amputations, and to promote effective management. However, the translation of clinical guidelines into nursing practice remains fragmented and inconsistent, and a recent homecare chart audit showed less than half the recommended risk factors for diabetic foot ulcers were assessed, and peripheral neuropathy (the most significant predictor of complications) was not assessed at all. Strong leadership is consistently described as significant to successfully transfer guidelines into practice. Limited research exists however regarding which leadership behaviours facilitate and support implementation in nursing. The purpose of this pilot study is to evaluate the impact of a leadership intervention in community nursing on implementing recommendations from a clinical guideline on the nursing assessment and management of diabetic foot ulcers. Methods Two phase mixed methods design is proposed (ISRCTN 12345678). Phase I: Descriptive qualitative to understand barriers to implementing the guideline recommendations, and to inform the intervention. Phase II: Matched pair cluster randomized controlled trial (n = 4 centers) will evaluate differences in outcomes between two implementation strategies. Primary outcome: Nursing assessments of client risk factors, a composite score of 8 items based on Diabetes/Foot Ulcer guideline recommendations. Intervention: In addition to the organization's 'usual' implementation strategy, a 12 week leadership strategy will be offered to managerial and clinical leaders consisting of: a) printed materials, b) one day interactive workshop to develop a leadership action plan tailored to barriers to support implementation; c) three post-workshop teleconferences. Discussion This study will provide vital information on which leadership strategies are well received to facilitate and support guideline implementation. The anticipated outcomes will provide information to assist with effective management of foot ulcers for people with diabetes. By tracking clinical outcomes associated with guideline implementation, health care administrators will be better informed to influence organizational and policy decision-making to support evidence-based quality care. Findings will be useful to inform the design of future multi-centered trials on various clinical topics to enhance knowledge translation for positive outcomes. Trial Registration Current Control Trials ISRCTN0691089

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore