9 research outputs found

    LEAF MORPHOLOGY AND ANATOMY OF VARIETIES OF TURNERA DIFFUSA VAR. DIFFUSA AND TURNERA DIFFUSA VAR. APHRODISIACA (WARD) URB

    Get PDF
    Background: Mexican damiana (Turnera diffusa Willd. Ex. Schult), specifically damiana of California has a high demand in the international market for its popularity as aphrodisiac, but its marketing has been affected by the adulteration of its products due to a lack of authentication mechanisms and limited information on the differences between the two currently known varieties. The aim of this study was to establish a leaf standard monograph with scientific bases of the varieties aphrodisiaca and diffusa of Turnera diffusa Willd. Ex. Schult, cultivated at the same agronomic and environmental conditions. Material and Methods: Damiana leaves were collected from a cultivar located in the municipality of Culiacan, Sinaloa, Mexico in 2016. The pharmacognostic studies were carried out in terms of macroscopic and both optical and electronic microscopic characteristics of leaves of the two varieties for their distinction. Results: The leaves of diffusa variety were twice as large as those of the aphrodisiaca variety, whereas papillose glandular trichomes were observed with greater density in the aphrodisiaca variety than those on diffusa leaves where unicellular trichomes were the ones observed in greater density. The leaves of both varieties are dorsiventral and hypostomatic with paracytic stomata. Conclusion: The obtained qualitative and quantitative leaf standards provide reference information for the proper identification and monograph preparation of the aphrodisiaca and diffusa varieties of Turnera diffusa. Pharmacognostic characteristics such as the type of stomata, trichomes, and leaf identify the species, whereas characteristics as leaf size and trichome density differ between varieties

    Bioprocessing of Shrimp Waste Using Novel Industrial By-Products: Effects on Nutrients and Lipophilic Antioxidants

    No full text
    The production of marine foods is on the rise, and shrimp is one of the most widely consumed. As a result, a considerable amount of shrimp waste is generated, becoming a hazardous problem. Shrimp waste is a rich source of added-value components such as proteins, lipids, chitin, minerals, and carotenoids; however, new bioprocesses are needed to obtain these components. This work aimed to characterize the chemical and nutraceutical constituents from the liquor of shrimp waste recovered during a lactic acid fermentation process using the novel substrate sources whey and molasses. Our results showed that the lyophilized liquor is a rich source of proteins (25.40 ± 0.67%), carbohydrates (38.92 ± 0.19%), minerals (calcium and potassium), saturated fatty acids (palmitic, stearic, myristic and lauric acids), unsaturated fatty acids (oleic acid, linoleic, and palmitoleic acids), and astaxanthin (0.50 ± 0.02 µg astaxanthin/g). Moreover, fermentation is a bioprocess that allowed us to obtain antioxidants such as carotenoids with an antioxidant capacity of 154.43 ± 4.73 µM Trolox equivalent/g evaluated by the ABTS method. Our study showed that liquor from shrimp waste fermentation could be a source of nutraceutical constituents with pharmaceutical applications. However, further studies are needed to separate these added-value components from the liquor matrix

    Loading and Release of Phenolic Compounds Present in Mexican Oregano (Lippia graveolens) in Different Chitosan Bio-Polymeric Cationic Matrixes

    No full text
    Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90–99% and 50–60%, correspondingly. The release profiles in simulated fluids revealed a better control of host–guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility

    Phytochemical Characterization and In Vitro Anti-Inflammatory Evaluation in RAW 264.7 Cells of Jatropha cordata Bark Extracts

    No full text
    The inflammatory process, although beneficial, can produce tissue damage and systemic damage when uncontrolled. Effective therapeutic alternatives with little or no side effects are of great therapeutic interest. This study aimed to determine the phytochemical composition of bark extracts from J. cordata, an endemic plant from México, and evaluate their in vitro anti-inflammatory activity. Hexane, ethyl acetate, and methanol extracts were characterized by qualitative phytochemical tests, and their bioactive groups were identified by 1H NMR and gas chromatography coupled to mass spectrometry (GC–MS). The extract’s anti-inflammatory activity was evaluated as nitric oxide (NO) production and their cytotoxicity by an MTS cell proliferation assay in lipopolysaccharide (LPS)-activated RAW 264.7 cells at concentrations of 1–100 μg/mL. The hexane extract contained fatty acids, fatty esters, phytosterols, alkanes, vitamin E, and terpenoids; the ethyl acetate extract showed fatty acids, fatty esters, aromatic aldehyde, phytosterols, vitamin E, and terpenoids, while the methanolic extract showed fatty esters, fatty acid, aromatics aldehydes, and alcohol. The ethyl acetate extract showed the highest inhibition of NO production, followed by the methanolic extract and the hexane extract, without affecting the viability of RAW 264.7 macrophage cells. The results suggest that J. cordata extracts are a potential source of bioactive compounds with anti-inflammatory potential

    ¿Se escriben mejores textos académicos con la ayuda de RedacText 2.0?

    Get PDF
    El presente proyecto, continuación de otros dos anteriores, es el resultado de la experimentación de la plataforma Redactext 2.0 con estudiantes de Grado en Maestro de Educación Primaria. El objetivo principal consistió en comprobar experimentalmente si la herramienta contribuía a escribir textos académicos mejores. La creación de los Indicadores Textuales de Calidad (ITC), instrumento de gran valor para la revisión y corrección de los textos (T1: sin la utilización de la herramienta y T2 con ayuda de la misma), permitió evaluar unas y otras producciones. Los resultados muestran una mejora consistente de las medias estadísticas de dichos ITC a favor del T2. El análisis de dichos ITC permite ver los puntos fuertes de la plataforma así como sus carencias, lo cual constituye una oportunidad para incorporar las mejoras necesarias

    C. Literaturwissenschaft.

    No full text
    corecore