39 research outputs found

    Structural determinants in the C-terminal domain of apolipoprotein E mediating binding to the protein core of human aortic biglycan.

    Get PDF
    Abstract Apolipoprotein (apo) E-containing high density lipoprotein particles were reported to interact in vitrowith the proteoglycan biglycan (Bg), but the direct participation of apoE in this binding was not defined. To this end, we examined thein vitro binding of apoE complexed with dimyristoylphosphatidylcholine (DMPC) to human aortic Bg before and after glycosaminoglycan (GAG) depletion. In a solid-phase assay, apoE·DMPC bound to Bg and GAG-depleted protein core in a similar manner, suggesting a protein-protein mode of interaction. The binding was decreased in the presence of 1 m NaCl and was partially inhibited by either positively (0.2 m lysine, arginine) or negatively charged (0.2 m aspartic, glutamic) amino acids. A recombinant apoE fragment representing the C-terminal 10-kDa domain, complexed with DMPC, bound as efficiently as full-length apoE, whereas the N-terminal 22-kDa domain was inactive. Similar results were obtained with a gel mobility shift assay. Competition studies using a series of recombinant truncated apoEs showed that the charged segment in the C-terminal domain between residues 223 and 230 was involved in the binding. Overall, our results demonstrate that the C-terminal domain contains elements critical for the binding of apoE to the Bg protein core and that this binding is ionic in nature and independent of GAGs

    Mouse Plasminogen Has Oxidized Phosphatidylcholine Adducts That Are Not Metabolized by Lipoprotein-Associated Phospholipase A2 under Basal Conditions

    Get PDF
    We previously showed that plasminogen (Plg) isolated from the plasma of normal human subjects contains 1–2 moles of oxidized phosphatidylcholine (oxPtdPC) adducts/mole of protein. Moreover, we suggested that these species are generated at the hepatic site and speculated that they may play a role in the reported cardiovascular pathogenicity of Plg. We aimed to determine whether mouse Plg also harbors linked oxPtdPCs and whether these molecules are metabolized by lipoprotein-associated phospholipase A2/PAF acetylhydrolase (Lp-PLA2/PAF-AH), an enzyme specific for hydrolysis of oxPtdPCs. We determined the total concentration of Plg in plasma samples from control (WT) and Lp-PLA2-deficient (KO) mice, we isolated Plg, and assessed its content of oxPtdPCs by immunoblot analyses. We also evaluated whether human recombinant Lp-PLA2 metabolized Plg-linked oxPtdPCs in vivo and in vitro. WT and KO mice expressed comparable levels (14.4–15.8 mg/dL) of plasma Plg, as determined by ELISA. We observed no differences in the content of oxPtdPC in Plg isolated from the two mouse strains and in parallel no changes in oxPtdPC content in mouse Plg following incubation with pure recombinant Lp-PLA2. Plg from mouse plasma contains oxPtdPC adducts that are not affected by the action of Lp-PLA2, suggesting that linkage to Plg protects oxPtdPCs from metabolism during their transport in the plasma. This modification may have important physio-pathological implications related to the function of Plg, oxPtdPCs, or both

    Apolipoprotein A-II Influences Apolipoprotein E-Linked Cardiovascular Disease Risk in Women with High Levels of HDL Cholesterol and C-Reactive Protein

    Get PDF
    Background: In a previous report by our group, high levels of apolipoprotein E (apoE) were demonstrated to be associated with risk of incident cardiovascular disease in women with high levels of C-reactive protein (CRP) in the setting of both low (designated as HR1 subjects) and high (designated as HR2 subjects) levels of high-density lipoprotein cholesterol (HDL-C). To assess whether apolipoprotein A-II (apoA-II) plays a role in apoE-associated risk in the two female groups. Methodology/Principal: Outcome event mapping, a graphical data exploratory tool; Cox proportional hazards multivariable regression; and curve-fitting modeling were used to examine apoA-II influence on apoE-associated risk focusing on HDL particles with apolipoprotein A-I (apoA-I) without apoA-II (LpA-I) and HDL particles with both apoA-I and apoA-II (LpA-I:A-II). Results of outcome mappings as a function of apoE levels and the ratio of apoA-II to apoA-I revealed within each of the two populations, a high-risk subgroup characterized in each situation by high levels of apoE and additionally: in HR1, by a low value of the apoA-II/apoA-I ratio; and in HR2, by a moderate value of the apoA-II/apoA-I ratio. Furthermore, derived estimates of LpA-I and LpA-I:A-II levels revealed for high-risk versus remaining subjects: in HR1, higher levels of LpA-I and lower levels of LpA-I:A-II; and in HR2 the reverse, lower levels of LpA-I and higher levels of LpA-I:A-II. Results of multivariable risk modeling as a function of LpA-I and LpA-I:A-II (dichotomized as highest quartile versus combined three lower quartiles) revealed association of risk only for high levels of LpA-I:A-II in the HR2 subgroup (hazard ratio 5.31, 95% CI 1.12-25.17, p = 0.036). Furthermore, high LpA-I: A-II levels interacted with high apoE levels in establishing subgroup risk. Conclusions/Significance: We conclude that apoA-II plays a significant role in apoE-associated risk of incident CVD in women with high levels of HDL-C and CRP

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients
    corecore