2,403 research outputs found
Dynamics of Race, Culture and Key Indicators of Health in the Nation's 100 Largest Cities and Their Suburbs
Profiles the 2000 status of, and changes since 1990, in rates of health and health-related measures to identify patterns in race/ethnicity, foreign-born status, language use, poverty, income, low birth weight, teen births, prenatal care, and tuberculosis
Video Manipulation Techniques for the Protection of Privacy in Remote Presence Systems
Systems that give control of a mobile robot to a remote user raise privacy
concerns about what the remote user can see and do through the robot. We aim to
preserve some of that privacy by manipulating the video data that the remote
user sees. Through two user studies, we explore the effectiveness of different
video manipulation techniques at providing different types of privacy. We
simultaneously examine task performance in the presence of privacy protection.
In the first study, participants were asked to watch a video captured by a
robot exploring an office environment and to complete a series of observational
tasks under differing video manipulation conditions. Our results show that
using manipulations of the video stream can lead to fewer privacy violations
for different privacy types. Through a second user study, it was demonstrated
that these privacy-protecting techniques were effective without diminishing the
task performance of the remote user.Comment: 14 pages, 8 figure
Refined localization of the asparagine synthetase gene (ASNS) to chromosome 7, region q21.3, and characterization of the somatic cell hybrid line 4AF/106/K015
We have mapped the asparagine synthetase gene (ASNS) to 7q21.3 by fluorescence in situ hybridization. While this study refined the localization of the gene, it also revealed a rearrangement in a somatic cell hybrid line which was used in previous ASNS mapping. Using additional probes from other regions of human chromosome 7, we showed that this cell line (4AF/106/KO15) contained a rearranged chromosome 7 in which a segment of the long arm was apparently duplicated and inserted into the short arm. Caution should be used therefore when interpreting data obtained from this cell line for gene mapping studies.published_or_final_versio
Clinical–pathologic significance of cancer stem cell marker expression in familial breast cancers
Human breast cancer cells with a CD44(+)/CD24(−/low) or ALDH1+ phenotype have been demonstrated to be enriched for cancer stem cells (CSCs) using in vitro and in vivo techniques. The aim of this study was to determine the association between CD44(+)/CD24(−/low) and ALDH1 expression with clinical–pathologic tumor characteristics, tumor molecular subtype, and survival in a well characterized collection of familial breast cancer cases. 364 familial breast cancers from the Ontario Familial Breast Cancer Registry (58 BRCA1-associated, 64 BRCA2-associated, and 242 familial non-BRCA1/2 cancers) were studied. Each tumor had a centralized pathology review performed. TMA sections of all tumors were analyzed for the expression of ER, PR, HER2, CK5, CK14, EGFR, CD44, CD24, and ALDH1. The Chi square test or Fisher’s exact test was used to analyze the marker associations with clinical–pathologic tumor variables, molecular subtype and genetic subtype. Analyses of the association of overall survival (OS) with marker status were conducted using Kaplan–Meier plots and log-rank tests. The CD44(+)/CD24(−/low) and ALDH1+ phenotypes were identified in 16% and 15% of the familial breast cancer cases, respectively, and associated with high-tumor grade, a high-mitotic count, and component features of the medullary type of breast cancer. CD44(+)/CD24(−/low) and ALDH1 expression in this series were further associated with the basal-like molecular subtype and the CD44(+)/CD24(−/low) phenotype was independently associated with BRCA1 mutational status. The currently accepted breast CSCs markers are present in a minority of familial breast cancers. Whereas the presence of these markers is correlated with several poor prognostic features and the basal-like subtype of breast cancer, they do not predict OS
ER and HER2 expression are positively correlated in HER2 non-overexpressing breast cancer
PMCID: PMC3446380This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
Peer reviewedPublisher PD
Differences in the localization and morphology of chromosomes in the human nucleus
Using fluorescence in situ hybridization
we show striking differences in nuclear position,
chromosome morphology, and interactions with nuclear
substructure for human chromosomes 18 and
19. Human chromosome 19 is shown to adopt a
more internal position in the nucleus than chromosome
18 and to be more extensively associated with
the nuclear matrix. The more peripheral localization
of chromosome 18 is established early in the cell cycle
and is maintained thereafter. We show that the
preferential localization of chromosomes 18 and 19
in the nucleus is reflected in the orientation of translocation
chromosomes in the nucleus. Lastly, we
show that the inhibition of transcription can have
gross, but reversible, effects on chromosome architecture.
Our data demonstrate that the distribution of
genomic sequences between chromosomes has implications
for nuclear structure and we discuss our
findings in relation to a model of the human nucleus
that is functionally compartmentalized
Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)
Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out. A Osorio1, R L Milne2, G Pita3, P Peterlongo4,5, T Heikkinen6, J Simard7, G Chenevix-Trench8, A B Spurdle8, J Beesley8, X Chen8, S Healey8, KConFab9, S L Neuhausen10, Y C Ding10, F J Couch11,12, X Wang11, N Lindor13, S Manoukian4, M Barile14, A Viel15, L Tizzoni5,16, C I Szabo17, L Foretova18, M Zikan19, K Claes20, M H Greene21, P Mai21, G Rennert22, F Lejbkowicz22, O Barnett-Griness22, I L Andrulis23,24, H Ozcelik24, N Weerasooriya23, OCGN23, A-M Gerdes25, M Thomassen25, D G Cruger26, M A Caligo27, E Friedman28,29, B Kaufman28,29, Y Laitman28, S Cohen28, T Kontorovich28, R Gershoni-Baruch30, E Dagan31,32, H Jernström33, M S Askmalm34, B Arver35, B Malmer36, SWE-BRCA37, S M Domchek38, K L Nathanson38, J Brunet39, T Ramón y Cajal40, D Yannoukakos41, U Hamann42, HEBON37, F B L Hogervorst43, S Verhoef43, EB Gómez García44,45, J T Wijnen46,47, A van den Ouweland48, EMBRACE37, D F Easton49, S Peock49, M Cook49, C T Oliver49, D Frost49, C Luccarini50, D G Evans51, F Lalloo51, R Eeles52, G Pichert53, J Cook54, S Hodgson55, P J Morrison56, F Douglas57, A K Godwin58, GEMO59,60,61, O M Sinilnikova59,60, L Barjhoux59,60, D Stoppa-Lyonnet61, V Moncoutier61, S Giraud59, C Cassini62,63, L Olivier-Faivre62,63, F Révillion64, J-P Peyrat64, D Muller65, J-P Fricker65, H T Lynch66, E M John67, S Buys68, M Daly69, J L Hopper70, M B Terry71, A Miron72, Y Yassin72, D Goldgar73, Breast Cancer Family Registry37, C F Singer74, D Gschwantler-Kaulich74, G Pfeiler74, A-C Spiess74, Thomas v O Hansen75, O T Johannsson76, T Kirchhoff77, K Offit77, K Kosarin77, M Piedmonte78, G C Rodriguez79, K Wakeley80, J F Boggess81, J Basil82, P E Schwartz83, S V Blank84, A E Toland85, M Montagna86, C Casella87, E N Imyanitov88, A Allavena89, R K Schmutzler90, B Versmold90, C Engel91, A Meindl92, N Ditsch93, N Arnold94, D Niederacher95, H Deißler96, B Fiebig97, R Varon-Mateeva98, D Schaefer99, U G Froster100, T Caldes101, M de la Hoya101, L McGuffog49, A C Antoniou49, H Nevanlinna6, P Radice4,5 and J Benítez1,3 on behalf of CIMB
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
- …
