10 research outputs found

    LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain

    Get PDF
    International audienceLAMP5 is member of the LAMP family of membrane proteins. In contrast to the canonical members of this protein family, LAMP1 and LAMP2, which show widespread expression in many tissues, LAMP 5 is brain specific in mice. In C. elegans, the LAMP5 ortholog UNC-46 has been suggested to act a trafficking chaperone, essential for the correct targeting of the nematode vesicular GABA-transporter UNC-47. We show here that in the mouse brain LAMP5 is expressed in subpopulations of GABAergic forebrain neurons in the striato-nigral system and the olfactory bulb. The protein was present at synaptic terminals, overlapping with the mammalian vesicular GABA-transporter VGAT. In LAMP5-deficient mice localization of the transporter was unaffected arguing against a conserved role in VGAT trafficking. Electrophysiological analyses in mutants showed alterations in short term synaptic plasticity suggesting that LAMP5 is involved in controlling the dynamics of evoked GABAergic transmission. At the behavioral level, LAMP5 mutant mice showed decreased anxiety and deficits in olfactory discrimination. Altogether, this work implicates LAMP5 function in GABAergic neurotransmission in defined neuronal subpopulations

    Absence of LAMP5 does not alter brain structure nor spine density in the OB.

    No full text
    <p>(A) Cresyl violet staining of forebrain and OB sections shows no obvious structural changes in the brain in the absence of LAMP5. (B) Dendrites of control (<i>LAMP5 flox/+</i>) and mutant (<i>LAMP5 flox/flox</i>) newly generated granule neurons observed in the EPL of the OB 28 days after their electroporation (28dpe) with GFP and Cre recombinase expression plasmids. (C) Quantification of spine density on the dendrites of control (CTL) and KO newly integrated neurons. Dendrite morphology and spine density are unchanged in <i>LAMP5</i> KO. Dendrites n = 26 (flox/+) and 27 (flox/flox). Statistics: Wilcoxon test p-value = 0.9645. Scale bars: A, 1mm (0.5 mm for the OB); B, 20 μm (left), 5 μm (right). ST: Striatum; Th: Thalamus.</p

    <i>LAMP5</i> knockout mice show normal VGAT distribution.

    No full text
    <p>(A, B) Immunostaining of LAMP5 and VGAT on GP (A) and OB (B) histological sections show no change in tissue and subcellular distribution in the absence of LAMP5. (C) Signal intensity of VGAT staining in the GP and in the OB, assessed by ImageJ analysis, is also unchanged. Mean intensity was calculated over 3 photomicrographs. Scale bar: A, 100 μm (left), 5 μm (right); C, 50 μm (left), 5 μm (right).</p

    LAMP5 is specifically expressed in GABAergic synapses.

    No full text
    <p>(A) Immunofluorescence labeling for LAMP5 and GAD65 proteins demonstrates co-labelling in GABAergic axon terminals in the GP (arrowheads). (B) LAMP5 immunoreactivity never overlaps with vGLUT1 (arrowheads), thus it is absent from glutamatergic synapses. (C, C') In the OB, LAMP5 is localized on the synapses (arrowheads) of newly generated granule neurons, labeled with GFP by in vivo brain electroporation. (D) Electron microscopy immunogold labeling validates synaptic localization of LAMP5. Electron dense gold particles are always associated with symmetric synaptic densities (arrow) typical of GABAergic synapses formed by granule neurons onto mitral cell dendrites. (E) Like in the GP, glutamatergic synapses in the OB are devoid of LAMP5 staining (arrowheads). Scale bars: 5 μm in A,B,C,E, F; 0,1 μm in D.</p

    Short-term plasticity of the striatopallidal synapse is altered in <i>LAMP5</i> deficient mice.

    No full text
    <p>(A) Top: Representative traces of mIPSCs from WT and KO mice. Bottom: Cumulative inter-event interval (left) and amplitude (right) distributions of mIPSCs obtained in WT and KO mice (n = 400 events per cell). The frequency of mIPSCs is significantly increased in <i>LAMP5</i> KO compared to WT mice (<i>p</i> < 0.001; WT amplitude n = 3 mice, n = 4 slices, n = 7 cells / KO amplitude n = 2 mice, n = 4 slices, n = 5 cells; WT frequency n = 3 mice, n = 4 slices, n = 7 cells / KO frequency n = 2 mice, n = 4 slices, n = 6 cells). (B) Parasagittal section of the mouse brain showing the recording and stimulation sites. Evoked striatopallidal GABAergic IPSCs are blocked by the GABA<sub>A</sub> receptor antagonist, picrotoxin (ptx). St: striatum, GP: globus pallidus. (C) Mean PPR values from WT and KO mice at different interstimulus intervals. Sample traces of PPR are shown above the graph (traces were scaled to first IPSCs). * p < 0.05, ** p < 0.01 vs. WT mice. (D) Synaptic depression during repeated stimulation (10 pulses at 20 and 50 Hz) in WT mice was replaced by facilitation in KO mice. Representative traces to 20 and 50 Hz trains are shown in WT and KO mice. * p < 0.05, ** p < 0.01 vs. WT mice. Error bars represent SEM.</p

    Differential expression of <i>LAMP5</i> mRNA and protein in the brain.

    No full text
    <p>(A,C) In situ hybridization and (B,D) immunohistochemistry for LAMP5 on sagittal brain sections (A,B) and on coronal olfactory bulb (OB) sections (C,D). Strongest expression of <i>LAMP5</i> mRNA is found in the neocortex (CX), piriform cortex (Pir), hippocampus (Hp), striatum (ST) and the granular cell layer (GCL) of the OB. LAMP5 protein is strongly present in the Globus Pallidus/Ventral Pallidum complex (GP/VP), the Substantia Nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), that are the main output structures of the striatal GABAergic projection neurons, and in the external plexiform layer (EPL), in which granule cells positioned in the granule cell layer (GCL) form GABAergic synapses. (E-F) Schematic representation of <i>LAMP5</i> mRNA (light grey) and protein (dark grey) expression in the rodent forebrain (E) and OB (F). (G) qRT-PCR analysis of <i>LAMP5</i> expression in different brain tissue samples. Coherent with immunohistochemical stainings, strongest expression of <i>LAMP5</i> mRNA is detected in the cortex, striatum and the OB. (H) Western blotting and its quantification (I) demonstrates that LAMP5 protein is strongly expressed in GP and SNr while striatal tissue (ST) and cortex show only weak signal. Th: thalamus; Scale bar: 1 mm in A,B; 0.5 mm in C,D.</p

    <i>LAMP5</i> deficient mice validate mAb 34.2 anti-LAMP5 antibody specificity.

    No full text
    <p>(A) Targeting strategy to generate a <i>LAMP5</i> deficient mouse line. The targeting vector was designed to remove exons 3–5 after CRE-induced recombination, leading to a null allele. <i>LAMP5</i> null animals are viable and therefore used for most analyses. (B) Western blot of KO (-/-), heterozygote (+/-) and wild type (+/+) mouse brains demonstrates absence of protein in homozygous KOs. (C) Immunohistochemistry with mAb 34.2 anti-LAMP5 antibody on <i>LAMP5</i><sup><i>+/+</i></sup> and <i>LAMP5</i><sup><i>-/-</i></sup> tissue sections of GP and OB validates the absence of LAMP5 protein in KOs. Cortex was always negative. Scale bars: C, 200 μm for GP and OB; 100 μm for cortex.</p

    LAMP5 is present on VGAT positive synaptic vesicles.

    No full text
    <p>(A) Histological sections of the GP and the OB immunostained for LAMP5 and VGAT. LAMP5 labeling largely overlaps with VGAT immunoreactivity in both structures (arrowheads) (B) Quantitative evaluation of synaptic puncta shows that the vast majority of LAMP5 positive synapses co-express VGAT (n = 4 photomicrographs for GP and for OB). (C) Immunoisolation of vesicles using a VGAT antibody followed by western blotting. LAMP5 is specifically found in the VGAT positive fraction. Scale bar: 5 μm.</p
    corecore