41 research outputs found

    The global transformation of geomorphology

    Get PDF
    This chapter reviews the various developments in geomorphology in terms of institutions, journals, textbooks, research stations, etc. Among the institutions discussed are the Binghamton Geomorphology Symposium, the Geological Society of America Quaternary Geology and Geomorphology Division, the Association of American Geographers Geomorphology Specialty Group, the British Geomorphological Research Group, the IGU Commission on Measurements, Theory and Application in Geomorphology (COMTAG), the International Association of Geomorphologists, the European Geosciences Union (EGU), the American Geophysical Union (AGU), the International Quaternary Association, and the International Conference on Aeolian Research. Many countries established their own national bodies. A number of new journals appeared, including Catena, Earth Surface Processes and Landforms, Géomorphologie, and Geomorphology. In addition, during the closing decades of the twentieth century there was a proliferation of textbooks in geomorphology. One development was that geomorphological research was promoted by the establishment of research stations. These permitted long-term monitoring and provided bases for sustained investigations. The study of fluvial processes was much encouraged in the United States at USDA Forest Service research basins (known as ‘watersheds’ in the USA) such as the Hubbard Brook Experimental Forest (New Hampshire), Coweeta Hydrologic Laboratory (North Carolina) and the H.J. Andrews Experimental Forest (Oregon). The Royal Geographical Society (with the Institute of British Geographers) organized ambitious research projects in collaboration with host nations. Various US government departments supported much geomorphological research in various parts of the world. Some European countries fostered overseas geomorphological research and created missions. Notable was the work of ORSTOM (Office de la Recherche Scientifique et Technique Outre-mer) in former francophone colonies. In the post-war years, and as independence approached and then occurred, new universities were established in Africa. These employed expatriate geomorphologists and also trained up a new generation of indigenous scholars. The decades since the 1960s have been a period of space exploration and the development of remote sensing. This has had important implications for geomorphology. The period also saw the onset of the digital age and the beginning of the World Wide Web's influence on teaching and research. Applied research became increasingly important. A major cause for international and cross-disciplinary co-operation during the period was the emergence of geoarchaeology. Finally, since the 1950s, an increasing number of women have made important contributions to the discipline

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Waterfalls: Forms, Distribution, Processes and Rates of Recession

    No full text
    A waterfall is a very steep (commonly nearly vertical) fall of some magnitude in a river course. Waterfalls are widespread fluvial landforms that have been described from many parts of the world. Thirty-eight World Heritage Properties include waterfalls in their designation. In addition, some waterfalls are actual or potential geomorphosites. Waterfalls occur in almost all climatic environments, though they are particularly common in formerly glaciated areas. They occur on a huge diversity of rock types, although in general, they do not form persistent or large falls on soft or unconsolidated rocks. Waterfalls also occur in a wide range of geomorphological settings: glaciated areas, areas of active tectonism, areas of sea-cliff retreat and sea-level change, great escarpments on passive margins, basins with river capture, rifted and faulted areas and areas that have been subjected to megaflooding. Multiple processes account for waterfall retreat and varying rates of recession. Although the greatest interest has been in rates of waterfall recession, there are examples of waterfalls that prograde as a result of tufa deposition

    2006, International Year of Deserts, Desertification and Dust

    Full text link
    peer reviewedDesertification ranks among the major environmental challenges of the 21st century and is defined by the United Nations Convention to Combat Desertification as ‘land degradation in arid, semiarid, and dry subhumid areas resulting from various factors, including climatic variations and human activities’. Currently, desertification affects a total area between 6 million and 12 million square kilometres and generates large loss of income, estimated at US$42 billion each year. Areas threatened by desertification occupy 34% of the Earth’s land area and are home to about 2 billion people. [...

    Dust storms in South West Asia

    No full text
    Dust storms are widespread in the northern part of the Indian sub continent and neighbouring areas. In this paper the frequencies of dust storms as portrayed by the mapping of surface observational data are compared with maps of aerosol conditions shown by the Total Ozone Monitoring Spectrometer (TOMS). Seasonal patterns are illustrated, and these are related to meteorological conditions that may affect dust storm generation.738
    corecore