106 research outputs found

    A remarkable long-term light curve, and deep, low-state spectroscopy: Swift & XMM-Newton monitoring of the NLS1 galaxy Mkn 335

    Get PDF
    The Narrow-line Seyfert 1 galaxy (NLS1) Mkn 335 is remarkable because it has repeatedly shown deep, long X-ray low-states which show pronounced spectral structure. It has become one of the prototype AGN in deep minimum X-ray states. Here we report on the continuation of our ongoing monitoring campaign with Swift and the examination of the low state X-ray spectra based on a 200 ks triggered observation with XMM in June 2009. Swift has continuously monitored Mkn 335 since May 2007 typically on a monthly basis. This is one of the longest simultaneous UV/X-ray light curves so far obtained for an active galactic nucleus (AGN). Mkn 335 has shown strong X-ray variability even on time scales of hours. In the UV, it turns out to be one of the most variable among NLS1s. Long-term Swift monitoring allow us to examine correlations between the UV, X-rays and X-ray hardness ratios. We find no significant correlation or lag between the UV and X-ray variability; however, we do find distinct trends in the behavior of the hardness ratio variability. The hardness ratio and count rate are correlated in the low-flux state, but no correlation is seen in the high-state. The X-ray low-state spectra of the 2007 and 2009 XMM observations display significant spectral variability. We fit the X-ray spectra with a suite of phenomenological models in order to characterize the data. The broad band CCD spectrum can be fitted equally well with partial absorption and blurred reflection models. These more complicated models are explored in further detail in upcoming work.Comment: 23 pages, 8 figures, 4 Tables, ApJ Suppl. accepte

    An XMM-Newton Study of Six Narrow-Line Seyfert 1 Galaxies at z = 0.35--0.92

    Full text link
    We report a detailed analysis of the XMM-Newton spectra of six Narrow-Line Seyfert 1 (NLS1) galaxies at redshift z = 0.35--0.92. Compared with the NLS1s at lower redshift in the previously most-studied sample, these NLS1s have larger black hole (BH) masses (logMBH>7.5\log\,M_\text{BH}>7.5) with similar or even lower Eddington ratios. Our extended XMM-Newton sample of NLS1s shows strong soft X-ray excess emission below 2 keV. The quantified soft excess strength does not show an obvious discrepancy from previous studies of the lower-redshift NLS1s. The systematic effect in the measurement of the Eddington ratio mainly lies in the bolometric correction factor. We also tentatively fit the spectra assuming two more physical models for the soft excess: warm Comptonization and relativistic reflection from the inner accretion disk. In the first scenario, we confirm the ubiquity of a warm and optically thick corona. The behavior of a single source can be better explained by relativistic reflection, although we cannot distinguish which model is a more favorable explanation for the soft excess based on the best-fit statistics.Comment: 13 pages, 10 figure

    The Eddington ratio-dependent ‘changing look’ events in NGC 2992

    Get PDF
    We present an analysis of historical multiwavelength emission of the `Changing Look’ (CL) Active Galactic Nucleu (AGN) in NGC 2992, covering epochs ranging from 1978 to 2021, as well as new X-ray and optical spectra. The galaxy presents multiple Seyfert type transitions from Type 2 to intermediate-type, losing and regaining its Hα broad emission lines (BEL) recurrently. In X-rays, the source shows intrinsic variability with the absorption corrected luminosity varying by a factor of ∼ 40. We rule-out tidal disruption events or variable obscuration as causes of the type transitions, and show that the presence and the flux of th Hα BEL is directly correlated with the 2–10 keV X-ray luminosity (L2−10): the component disappears at L2−10 ≤ 2.6 × 1042 erg cm−2 s−1; this luminosity value translates into an Eddington ratio (λEdd) of ∼ 1 per cent. The λEdd in which the BEL transitions occur is the same as the critical value at which a state transition between a radiatively inefficient accretion flow and a thin accretion disk is expected, such similarity suggests that the AGN is operating at the threshold mass accretion rate between the two accretion modes. We find a correlation between the narrow Fe Kα flux and λEdd, and an anticorrelation between full-width at half maximum of Hα BEL and λEdd, in agreement with theoretical predictions. Two possible scenarios for type transitions are compatible with our results: either the dimming of the AGN continuum, which reduces the supply of ionizing photons available to excite the gas in the Broad Line Region (BLR), or the fading of the BLR structure itself occurs as the low accretion rate is not able to sustain the required cloud flow rate in a disc-wind BLR model

    XMM-Newton observations of the Narrow-Line Seyfert 1 galaxy Mrk 335 in an historical low X-ray flux state

    Get PDF
    We report the discovery of strong soft X-ray emission lines and a hard continuum above 2 keV in the Narrow-Line Seyfert 1 galaxy Mrk 335 during an extremely low X-ray flux state. Mrk 335 was observed for 22 ks by XMM-Newton in July 2007 as a Target of Opportunity to examine it in its X-ray low-flux state, which was discovered with Swift. Long-term light curves suggest that this is the lowest flux state this AGN has ever been seen in. However, Mrk 335 is still sufficiently bright that its X-ray properties can be studied in detail. The X-ray continuum spectrum is very complex and requires several components to model. Statistically, partial covering and blurred reflection models work well. We confirm the presence of a strong narrow Fe line at 6.4 keV. High-resolution spectroscopy with the XMM-RGS reveals strong, soft X-ray emission lines not detected in previous, higher signal-to-noise, XMM-Newton observations, such as: highly ionized Fe lines, O VII, Ne IX and Mg XI lines. The optical/UV fluxes are similar to those previously measured with Swift. Optical spectroscopy taken in 2007 September do not show any changes to optical spectra obtained 8 years earlier.Comment: Accepted for publication in ApJ; 26 pages, 10 figues, in press, ApJ 681 (July 01, 2008); Updated version with corrections made by the edito

    Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms

    Get PDF
    BACKGROUND: Animal studies suggest that brain apolipoprotein E (apoE) levels influence amyloid-β (Aβ) deposition and thus risk for Alzheimer's disease (AD). We have previously demonstrated that deletion of the ATP-binding cassette A1 transporter (ABCA1) in mice causes dramatic reductions in brain and cerebrospinal fluid (CSF) apoE levels and lipidation. To examine whether polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from 168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD. We then genotyped the subjects for ten previously identified ABCA1 single nucleotide polymorphisms (SNPs). RESULTS: In all subjects, the mean CSF apoE level was 9.09 μg/ml with a standard deviation of 2.70 μg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly correlated (r(2 )= 0.93, p < 0.01). In contrast, CSF apoE levels in different individuals varied widely (coefficient of variation = 46%). CSF apoE levels did not vary according to AD status, APOE genotype, gender or race. Average apoE levels increased with age by ~0.5 μg/ml per 10 years (r(2 )= 0.05, p = 0.003). We found no significant associations between CSF apoE levels and the ten ABCA1 SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported. CONCLUSION: We found that CSF apoE levels vary widely between individuals, but are stable within individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF apoE levels, but average CSF apoE levels increase with age. Given the lack of association between CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set

    The Dynamics and Afterglow Radiation of Gamma-Ray Bursts. I. Constant Density Medium

    Full text link
    Direct multi-dimensional numerical simulation is the most reliable approach for calculating the fluid dynamics and observational signatures of relativistic jets in gamma-ray bursts (GRBs). We present a two-dimensional relativistic hydrodynamic simulation of a GRB outflow during the afterglow phase, which uses the fifth-order weighted essentially non-oscillatory scheme and adaptive mesh refinement. Initially, the jet has a Lorentz factor of 20. We have followed its evolution up to 150 years. Using the hydrodynamic data, we calculate synchrotron radiation based upon standard afterglow models and compare our results with previous analytic work. We find that the sideways expansion of a relativistic GRB jet is a very slow process and previous analytic works have overestimated its rate. In our computed lightcurves, a very sharp jet break is seen and the post-break lightcurves are steeper than analytic predictions. We find that the jet break in GRB afterglow lightcurves is mainly caused by the missing flux when the edge of the jet is observed. The outflow becomes nonrelativistic at the end of the Blandford-McKee phase. But it is still highly nonspherical, and it takes a rather long time for it to become a spherical Sedov-von Neumann-Taylor blast wave. We find that the late-time afterglows become increasingly flatter over time. But we disagree with the common notion that there is a sudden flattening in lightcurves due to the transition into the Sedov-von Neumann-Taylor solution. We have also found that there is a bump in lightcurves at very late times (1000\sim 1000 days) due to radiation from the counter jet. We speculate that such a counter jet bump might have already been observed in GRB 980703.Comment: Title changed, high-resolution version available at http://cosmo.nyu.edu/~wqzhang/publications/ag.pdf, movies of the simulation available at http://cosmo.nyu.edu/~wqzhang/movies

    Swift, NuStar and XMM-Newton observations of the NLS1 galaxy RX J2317.8-4422 in an extreme X-ray low flux state

    Get PDF
    We report the discovery of RX J2317.8–4422 in an extremely low X-ray flux state by the Neil Gehrels Swift observatory in 2014 April/May. In total, the low-energy X-ray emission dropped by a factor of 100. We have carried out multiwavelength follow-up observations of this narrow-line Seyfert 1 galaxy. Here we present observations with Swift, XMM–Newton, and NuSTAR in 2014 October and November and further monitoring observations by Swift from 2015 to 2018. Compared with the beginning of the Swift observations in 2005, in the November 2014 XMM–Newton and NuSTAR observations RX J2317–4422.8 dropped by a factor of about 80 in the 0.3–10 keV band. While the high-state Swift observations can be interpreted by a partial covering absorption model with a moderate absorption column density of N_H = 5.4 × 10^(22) cm^(−2) or blurred reflection, due to the dominating background at energies above 2 keV the low-state XMM–Newton data cannot distinguish between different multicomponent models and were adequately fitted with a single power-law model. We discuss various scenarios like a long-term change of the accretion rate or absorption as the cause for the strong variability seen in RX J2317.8–4422

    PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy

    Get PDF
    We present the discovery and characterisation of PTF10iya, a short-lived (dt ~ 10 d, with an optical decay rate of ~ 0.3 mag per d), luminous (M_g ~ -21 mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fit by a blackbody with T ~ 1-2 x 10^4 K and peak bolometric luminosity L_BB ~ 1-5 x 10^44 erg per s (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z = 0.22405 +/- 0.00006) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic "big blue bump" seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light curve extending back to 2007, show no evidence for AGN-like activity. We therefore consider whether the tidal disruption of a star by an otherwise quiescent supermassive black hole may account for our observations. Though with limited temporal information, PTF10iya appears broadly consistent with the predictions for the early "super-Eddington" phase of a solar-type star disrupted by a ~ 10^7 M_sun black hole. Regardless of the precise physical origin of the accreting material, the large luminosity and short duration suggest that otherwise quiescent galaxies can transition extremely rapidly to radiate near the Eddington limit; many such outbursts may have been missed by previous surveys lacking sufficient cadence.Comment: 18 pages, 8 figures; revised following referee's comment
    corecore