214 research outputs found

    The influence of flow discharge variations on the morphodynamics of a diffluence-confluence unit on a large river: Impacts of discharge variation on a diffluence-confluence unit

    Get PDF
    © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three-dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m 3 s −1 ). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m 3 s −1 ), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s −1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m 3 s −1 ) and falling limb flows (Q = 13 500 m 3 s −1 ) the sediment balance is in quasi-equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature-induced water surface slope and bed morphological change may be first-order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long-term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd

    Extreme flood-driven fluvial bank erosion and sediment loads: direct process measurements using integrated Mobile Laser Scanning (MLS) and hydro-acoustic techniques: Direct measurement of flood-driven erosion using MLS and MBES

    Get PDF
    Copyright © 2016 John Wiley & Sons, Ltd. This methods paper details the first attempt at monitoring bank erosion, flow and suspended sediment at a site during flooding on the Mekong River induced by the passage of tropical cyclones. We deployed integrated mobile laser scanning (MLS) and multibeam echo sounding (MBES), alongside acoustic Doppler current profiling (aDcp), to directly measure changes in river bank and bed at high (~0.05 m) spatial resolution, in conjunction with measurements of flow and suspended sediment dynamics. We outline the methodological steps used to collect and process this complex point cloud data, and detail the procedures used to process and calibrate the aDcp flow and sediment flux data. A comparison with conventional remote sensing methods of estimating bank erosion, using aerial images and Landsat imagery, reveals that traditional techniques are error prone at the high temporal resolutions required to quantify the patterns and volumes of bank erosion induced by the passage of individual flood events. Our analysis reveals the importance of cyclone-driven flood events in causing high rates of erosion and suspended sediment transport, with a c. twofold increase in bank erosion volumes and a fourfold increase in suspended sediment volumes in the cyclone-affected wet season. Copyright © 2016 John Wiley & Sons, Ltd

    Modulation of outer bank erosion by slump blocks: disentangling the protective and destructive role of failed material on the three-dimensional flow structure

    Get PDF
    The three-dimensional flow field near the banks of alluvial channels is the primary factor controlling rates of bank erosion. Although submerged slump blocks and associated large-scale bank roughness elements have both previously been proposed to divert flow away from the bank, direct observations of the interaction between eroded bank material and the 3-D flow field are lacking. Here we use observations from multibeam echo sounding, terrestrial laser scanning, and acoustic Doppler current profiling to quantify, for the first time, the influence of submerged slump blocks on the near-bank flow field. In contrast to previous research emphasizing their influence on flow diversion away from the bank, we show that slump blocks may also deflect flow onto the bank, thereby increasing local shear stresses and rates of erosion. We use our measurements to propose a conceptual model for how submerged slump blocks interact with the flow field to modulate bank erosion

    Impact of dams and climate change on suspended sediment flux to the Mekong delta

    Get PDF
    The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of delta soils and for promoting sediment deposition that can offset rising sea levels. Yet, in many large river catchments this supply of sediment is being threatened by the planned construction of large dams. In this study, we apply the INCA hydrological and sediment model to the Mekong River catchment in South East Asia. The aim is to assess the impact of several large dams (both existing and planned) on the suspended sediment fluxes of the river. We force the INCA model with a climate model to assess the interplay of changing climate and sediment trapping caused by dam construction. The results show that historical sediment flux declines are mostly caused by dams built in PR China and that sediment trapping will increase in the future due to the construction of new dams in PDR Lao and Cambodia. If all dams that are currently planned for the next two decades are built, they will induce a decline of suspended sediment flux of 50% (47–53% 90% confidence interval (90%CI)) compared to current levels (99 Mt/year at the delta apex), with potentially damaging consequences for local livelihoods and ecosystems

    Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity

    Get PDF
    © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems

    A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses

    Get PDF
    AbstractA large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis (https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317) for the historical (1981–2014) and future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.</jats:p

    Prestige Affects Cultural Learning in Chimpanzees

    Get PDF
    Humans follow the example of prestigious, high-status individuals much more readily than that of others, such as when we copy the behavior of village elders, community leaders, or celebrities. This tendency has been declared uniquely human, yet remains untested in other species. Experimental studies of animal learning have typically focused on the learning mechanism rather than on social issues, such as who learns from whom. The latter, however, is essential to understanding how habits spread. Here we report that when given opportunities to watch alternative solutions to a foraging problem performed by two different models of their own species, chimpanzees preferentially copy the method shown by the older, higher-ranking individual with a prior track-record of success. Since both solutions were equally difficult, shown an equal number of times by each model and resulted in equal rewards, we interpret this outcome as evidence that the preferred model in each of the two groups tested enjoyed a significant degree of prestige in terms of whose example other chimpanzees chose to follow. Such prestige-based cultural transmission is a phenomenon shared with our own species. If similar biases operate in wild animal populations, the adoption of culturally transmitted innovations may be significantly shaped by the characteristics of performers
    • …
    corecore