276 research outputs found
Impact of modern methods of construction on healthcare infrastructure
The NHS is currently in the middle of an unprecedented building boom. The substantial investment programme estimated at over £11billon involves the regeneration of several existing hospitals and the construction of 100 new ones by 2010 (NHS, 1994). Behind this background, it has been recognised in the vision of the NHS that any effort to improve the quality of healthcare buildings needs to take due consideration of the construction methods to be adopted. At the same time, other factors, such as the involvement of the private sector in healthcare provision through various Public Private Finance (PFI) Schemes; the Latham (1994) and Egan (1998) reports; skills shortages; and the general call for fast tracked solutions in the construction industry have further fuelled the needs for more innovative construction techniques in healthcare sector. This paper provides an overview of MMC with particular emphasis on offsite and modular techniques and their healthcare infrastructure applications. Relevant literature has been reviewed and past projects explored to ascertain the main benefits to be achieved by adopting off-site and modular construction techniques within the context of healthcare infrastructure
Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions?
Vectors that underpin the natural dispersal of invasive alien species are frequently unknown. In particular, the passive dispersal (zoochory) of one organism (or propagule) by another, usually more mobile animal, remains poorly understood. Field observations of the adherence of invasive freshwater bivalves to other organisms have prompted us to assess the importance of zoochory in the spread of three prolific invaders: zebra mussel Dreissena polymorpha; quagga mussel Dreissena bugensis; and Asian clam Corbicula fluminea. An extensive, systematic search of the literature was conducted across multiple on-line scientific databases using various search terms and associated synonyms. In total, only five publications fully satisfied the search criteria. It appears that some fish species can internally transport viable adult D. polymorpha and C. fluminea specimens. Additionally, literature indicates that veligers and juvenile D. polymorpha can adhere to the external surfaces of waterbirds. Overall, literature suggests that zoochorous dispersal of invasive bivalves is possible, but likely a rare occurrence. However, even the establishment of a few individuals (or a single self-fertilising C. fluminea specimen) can, over-time, result in a substantial population. Here, we highlight knowledge gaps, identify realistic opportunities for data collection, and suggest management protocols to mitigate the spread of invasive alien species
Synthesis, structures, and magnetic behavior of new anionic copper(II) sulfate aggregates and chains
The global carbon budget 1959-2011
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future
Characterizing the entanglement of symmetric many-particle spin-1/2 systems
Analyzing the properties of entanglement in many-particle spin-1/2 systems is
generally difficult because the system's Hilbert space grows exponentially with
the number of constituent particles, . Fortunately, it is still possible to
investigate many-particle entanglement when the state of the system possesses
sufficient symmetry. In this paper, we present a practical method for
efficiently computing various bipartite entanglement measures for states in the
symmetric subspace and perform these calculations for . By
considering all possible bipartite splits, we construct a picture of the
multiscale entanglement in large symmetric systems. In particular, we
characterize dynamically generated spin-squeezed states by comparing them to
known reference states (e.g., GHZ and Dicke states) and new families of states
with near-maximal bipartite entropy. We quantify the trade-off between the
degree of entanglement and its robustness to particle loss, emphasizing that
substantial entanglement need not be fragile.Comment: Updated version reflects changes made in January 200
Using smart meters to estimate low voltage losses
Losses on low voltage networks are often substantial. For example, in the UK they have been estimated as being 4% of the energy supplied by low voltage networks. However, the breakdown of the losses to individual conductors and their split over time are poorly understood as generally only the peak demands and average loads over several months have been recorded. The introduction of domestic smart meters has the potential to change this. How domestic smart meter readings can be used to estimate the actual losses is analysed. In particular, the accuracy of using 30 minute readings compared with 1 minute readings, and how this accuracy could be improved, were investigated. This was achieved by assigning the data recorded by 100 smart meters with a time resolution of 1 minute to three test networks. Smart meter data from three sources were used in the investigation. It was found that 30 minute resolution data underestimated the losses by between 9% and 24%. By fitting an appropriate model to the data, it was possible to reduce the inaccuracy by approximately 50%. Having a smart meter time resolution of 10 minutes rather than 30 gave little improvement to the accuracy
Estimation of Carbon Footprints from Diesel Generator Emissions
The aim of this paper is to estimate the amount of
carbon footprints emitted from diesel generators in terms of
carbon dioxide. A constant load demand of 1.05 kW per hour
(6.3 kW/day) with six hours of operation of a diesel generator per day was selected for this analysis. The fuel consumption rate and carbon footprints in terms of carbon dioxide (CO2) were determined. It was discovered that emission of carbon footprints increased by five folds as emission factor was increased from 1kg to 5 kgCO2/liter. Similarly, the increment of a single kW rated power diesel generator at a constant emission factor increases 1.1 to 1.2 times carbon footprint emissions. It is revealed that the efficiency of diesel generator is inversely proportional to its rated power, fuel consumption rate and CO2 emissions. Therefore, the rated power of selected diesel generator should be close to the required load demand
Dynamic response of an Arctic epishelf lake to seasonal and long-term forcing: Implications for ice shelf thickness
Changes in the depth of the freshwater-seawater interface in epishelf lakes have been used to infer long-term changes in the minimum thickness of ice shelves; however, little is known about the dynamics of epishelf lakes and what other factors may influence their depth. Continuous observations collected between 2011 and 2014 in the Milne Fiord epishelf lake, in the Canadian Arctic, showed that the depth of the halocline varied seasonally by up to 3.3m, which was comparable to interannual variability. The seasonal depth variation was controlled by the magnitude of surface meltwater inflow and the hydraulics of the inferred outflow pathway, a narrow basal channel in the Milne Ice She
Case report 16
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46771/1/256_2004_Article_BF00347143.pd
- …