21 research outputs found

    Electrocardiographic findings in patients with arrhythmogenic cardiomyopathy and right bundle branch block ventricular tachycardia

    Full text link
    AIMS: Little is known about patients with right bundle branch block (RBBB)-ventricular tachycardia (VT) and arrhythmogenic cardiomyopathy (ACM). Our aims were: (i) to describe electrocardiogram (ECG) characteristics of sinus rhythm (SR) and VT; (ii) to correlate SR with RBBB-VT ECGs; and (iii) to compare VT ECGs with electro-anatomic mapping (EAM) data. METHODS AND RESULTS: From the European Survey on ACM, 70 patients with spontaneous RBBB-VT were included. Putative left ventricular (LV) sites of origin (SOOs) were estimated with a VT-axis-derived methodology and confirmed by EAM data when available.  Overall, 49 (70%) patients met definite Task Force Criteria. Low QRS voltage predominated in lateral leads (n = 37, 55%), but QRS fragmentation was more frequent in inferior leads (n = 15, 23%). T-wave inversion (TWI) was equally frequent in inferior (n = 28, 42%) and lateral (n = 27, 40%) leads. TWI in inferior leads was associated with reduced LV ejection fraction (LVEF; 46 ± 10 vs. 53 ± 8, P = 0.02). Regarding SOOs, the inferior wall harboured 31 (46%) SOOs, followed by the lateral wall (n = 17, 25%), the anterior wall (n = 15, 22%), and the septum (n = 4, 6%). EAM data were available for 16 patients and showed good concordance with the putative SOOs. In all patients with superior-axis RBBB-VT who underwent endo-epicardial VT activation mapping, VT originated from the LV. CONCLUSIONS: In patients with ACM and RBBB-VT, RBBB-VTs originated mainly from the inferior and lateral LV walls. SR depolarization and repolarization abnormalities were frequent and associated with underlying variants

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients.Methods and results Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 +/- 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P &lt;0.001).Conclusion Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com).</p

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p

    Impact of clinical and genetic findings on the management of young patients with Brugada syndrome.

    Get PDF
    BACKGROUND: Brugada syndrome (BrS) is an arrhythmogenic disease associated with sudden cardiac death (SCD) that seldom manifests or is recognized in childhood. OBJECTIVES: The objectives of this study were to describe the clinical presentation of pediatric BrS to identify prognostic factors for risk stratification and to propose a data-based approach management. METHODS: We studied 106 patients younger than 19 years at diagnosis of BrS enrolled from 16 European hospitals. RESULTS: At diagnosis, BrS was spontaneous (n = 36, 34%) or drug-induced (n = 70, 66%). The mean age was 11.1 ± 5.7 years, and most patients were asymptomatic (family screening, (n = 67, 63%; incidental, n = 13, 12%), while 15 (14%) experienced syncope, 6(6%) aborted SCD or symptomatic ventricular tachycardia, and 5 (5%) other symptoms. During follow-up (median 54 months), 10 (9%) patients had life-threatening arrhythmias (LTA), including 3 (3%) deaths. Six (6%) experienced syncope and 4 (4%) supraventricular tachycardia. Fever triggered 27% of LTA events. An implantable cardioverter-defibrillator was implanted in 22 (21%), with major adverse events in 41%. Of the 11 (10%) patients treated with hydroquinidine, 8 remained asymptomatic. Genetic testing was performed in 75 (71%) patients, and SCN5A rare variants were identified in 58 (55%); 15 of 32 tested probands (47%) were genotype positive. Nine of 10 patients with LTA underwent genetic testing, and all were genotype positive, whereas the 17 SCN5A-negative patients remained asymptomatic. Spontaneous Brugada type 1 electrocardiographic (ECG) pattern (P = .005) and symptoms at diagnosis (P = .001) were predictors of LTA. Time to the first LTA event was shorter in patients with both symptoms at diagnosis and spontaneous Brugada type 1 ECG pattern (P = .006). CONCLUSION: Spontaneous Brugada type 1 ECG pattern and symptoms at diagnosis are predictors of LTA events in the young affected by BrS. The management of BrS should become age-specific, and prevention of SCD may involve genetic testing and aggressive use of antipyretics and quinidine, with risk-specific consideration for the implantable cardioverter-defibrillator

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIO

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    AIMS: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. METHODS AND RESULTS: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). CONCLUSION: Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com)

    0332 : QUIDAM Study: assessment of hydroquinidine therapy in the management of Brugada syndrome patients at high arrhythmic risk and implanted with an ICD

    No full text
    International audienceBackground During last decades, the knowledge in pathophysiological mechanisms of Brugada Syndrome improved. ICD implantation is the only effective treatment to decrease arrhythmic mortality in high-risk patients. Based on experimental and clinical data hydroquinidine seems to be a promising alternative for the management of ventricular arrhythmia and SCD but need to be evaluated. Methods Fifty patients were included in this French multicentric, randomised, double-blind study. Hydroquinidine or placebo treatment was given during two 18 months cross-over phases. Arrhythmic events, ECG parameters and clinical events were evaluated. Results Twenty-six (52%) patients completed the study. Thirty-four (68%) presented side effects, mainly gastrointestinal, related to hydroquinidine therapy in whom 13 had to stopped. One appropriate ICD shock, one ventricular fibrillation with self-resolution and one inappropriate ICD shock occurred in absence of hydroquinidine therapy. Not one of these event occurred under hydroquinidine. No statistical analysis has been done, regarding this low number of arrhythmic events. Hydroquinidine, at short (3 hours after first taking) or long-term, significantly lengthen QT interval, QTc (respectively 404 vs 417sm and 409 vs 433ms), Tpe and Tpe max (respectively 94,8 vs 106,6 ms and 89,4 vs 107,7ms) without any change on J-point elevation nor Tpe/QTc ratio. QTc interval was significantly longer (433 vs 417ms) during long than short-term treatment without any other effect on ECG parameters. Conclusion High rates of hydroquinidine side effects and low number of arrhythmic events give difficulties to conduct large studies to prove its efficiency in Brugada Syndrome. Hydroquinidine lengthens and increases the repolarisation dispersal, with electrocardiographic effects generally similar during short and long-term treatment. These considerations should not stop its use in daily clinical practice, especially for management of electrical storms. The author hereby declares no conflict of interestFigure Flow chart of QUIDAM stud

    CO 2 The impact of clinical and genetic findings on the management of young Brugada syndrome patients

    No full text
    International audienceAims - Brugada Syndrome (BrS) is an arrhythmogenic disease associated with sudden cardiac death (SCD) which seldom manifests and is recognized in childhood. We aim to describe the pediatric BrS clinical presentation to identify prognostic factors for risk stratification, and to propose a data-based approach management. Methods and results - We studied 106 patients, under 19 years of age at diagnosis with spontaneous (n=36) or drug-induced (n=70) BrS from 16 European hospitals. At diagnosis, mean age was 11.1±5.7 years and most patients were asymptomatic [family screening (n=67), incidental (n=13)] while 15 had experienced syncope, 6 aborted SCD or symptomatic ventricular tachycardia, 2 supraventricular tachycardia (SVT), 3 palpitations or presyncope. During follow-up (median: 54 months), 10 patients had life-threatening arrhythmias (LTA) including 3 deaths. Six experienced syncope and 4 SVT. Fever triggered 27% of LTA events. An ICD was implanted in 22 with major adverse events in 41%. Of the 11 patients treated with hydroquinidine, 8 remained asymptomatic. Genetic testing was performed in 75 patients and SCN5A rare variants were identified in 58; among the 32 pediatric probands tested 15 were genotype positive. Of the 10 patients with LTA the 9 with genetic testing were all genotype positive whereas the 17 SCN5A negative patients remained asymptomatic. Spontaneous BrS type 1 ECG (p=0.005) and symptoms at diagnosis (p=0.0015) were predictors of lta. Time to the first LTA event was shorter in patients with both symptoms at diagnosis and spontaneous BrS type 1 ECG pattern (p=0.01) (figure 1). Conclusions - Spontaneous type 1 ECG and symptoms at diagnosis are predictors of LTA events in the young affected by BrS. The management of BrS should become age-specific and prevention of SCD may involve genetic testing, aggressive use of anti-pyretics and quinidine with risk-specific consideration for the IC
    corecore