54 research outputs found

    Water-Quality Surveillance of Swiss Rivers

    Get PDF
    Water-quality surveillance is essential for the detection of anthropogenic impacts on rivers. The surveillance strategy designed by the EAWAG combines long-term, continuous monitoring necessary for assessing the success of measures implemented to fight pollution with short, intensive field and laboratory studies to elucidate element transformations and transport processes.Emphasis is put on sound methods of sampling and sample processing which are paramount for a clear interpretation of river quality data. Results from process-oriented case studies show how a combination of different methods of sampling and analysis brought new insights into phosphorus transport pathways and on the availability of particle-bound phosphate for phytoplankton

    Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries

    Get PDF
    Methanogenesis from main methane precursors H2/CO2 and acetate was investigated in a temperature range of 2-70 °C using sediments from Lake Baldegg, Switzerland. Psychrophilic, psychrotrophic, mesophilic, and thermophilic methanogenic microbial communities were enriched by incubations for 1-3 months of nonamended sediment slurries at 5, 15, 30, and 50 °C. Isotope experiments with slurries amended with 14C-labeled bicarbonate and 14C-2-acetate showed that in the psychrophilic community (enriched at 5 °C), about 95% of methane originated from acetate, in contrast to the thermophilic community (50 °C) where up to 98% of methane was formed from bicarbonate. In the mesophilic community (30 °C), acetate was the precursor of about 80% of the methane produced. When the hydrogen-carbon dioxide mixture (H2/CO2) was used as a substrate, it was directly converted to methane under thermophilic conditions (70 and 50 °C). Under mesophilic conditions (30 °C), both pathways, hydrogenotrophic and acetoclastic, were observed. At low temperatures (5 and 15 °C), H2/CO2 was converted into methane by a two-step process; first acetate was formed, followed by methane production from acetate. When slurries were incubated at high partial pressures of H2/CO2, the high concentrations of acetate produced of more than 20 mM inhibited acetoclastic methanogenesis at a temperature below 15 °C. However, slow adaptation of the psychrophilic microbial community to high acetate concentrations was observe

    LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters

    Get PDF
    A targeted analytical method was established to determine a large number of chemicals known to interfere with the gluco- and mineralocorticoid signalling pathway. The analytes comprise 30 glucocorticoids and 9 mineralocorticoids. Ten out of these corticosteroids were primary metabolites. Additionally, 14 nonsteroids were included. These analytes represent a broader range of possible adverse modes of action than previously reported. For the simultaneous determination of these structurally diverse compounds, a single-step multimode solid-phase extraction and pre-concentration was applied. Extracts were separated by a short linear HPLC gradient (20min) on a core shell RP column (2.7ÎŒm particle size) and compounds identified and quantified by LC-MS/MS. The method provided excellent retention time reproducibility and detection limits in the low nanograms per litre range. Untreated hospital wastewater, wastewater treatment plant influent, treated effluent and river waters were analysed to demonstrate the applicability of the method. The results show that not all compounds were sufficiently eliminated by the wastewater treatment, resulting in the presence of several steroids (∌20ng/L) and nonsteroids in the final effluent, some of them at high concentrations up to 200ng/L. Most of the detected mono-hydroxylated steroidal transformation products were found at significantly higher concentrations than their parent compounds. We therefore recommend to include these potentially bioactive metabolites in environmental toxicity assessment

    Elevated Cardiac Troponin I in Sepsis and Septic Shock: No Evidence for Thrombus Associated Myocardial Necrosis

    Get PDF
    Elevated cardiac troponin I (cTnI) is frequently observed in patients with severe sepsis and septic shock. However, the mechanisms underlying cTnI release in these patients are still unknown. To date no data regarding coagulation disturbances as a possible mechanism for cTnI release during sepsis are available.Consecutive patients with systemic inflammatory response syndrome (SIRS), sepsis or septic shock without evidence of an acute coronary syndrome were analyzed. Coagulation parameters (clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), alpha-angle) were assessed in native whole blood samples, and using specific activators to evaluate the extrinsic and intrinsic as well as the fibrin component of the coagulation pathway with the use of rotational thrombelastometry (ROTEM). Thirty-eight patients were included and 22 (58%) were cTnI-positive. Baseline characteristics between TnI-positive and -negative patients were similar. The CT, CFT, MCF and the alpha-angle were similar between the groups with trends towards shorter CT in the extrinsic and fibrin activation.We found no differences in coagulation parameters analyzed with rotational thrombelastometry between cTnI-positive and -negative patients with SIRS, severe sepsis, and septic shock. These findings suggest that pathophysiological mechanisms other than thrombus-associated myocardial damage might play a major role, including reversible myocardial membrane leakage and/or cytokine mediated apoptosis in these patients

    Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries

    Get PDF
    Methanogenesis from main methane precursors H2/CO2 and acetate was investigated in a temperature range of 2–70 °C using sediments from Lake Baldegg, Switzerland. Psychrophilic, psychrotrophic, mesophilic, and thermophilic methanogenic microbial communities were enriched by incubations for 1–3 months of nonamended sediment slurries at 5, 15, 30, and 50 °C. Isotope experiments with slurries amended with 14C-labeled bicarbonate and 14C-2-acetate showed that in the psychrophilic community (enriched at 5 °C), about 95% of methane originated from acetate, in contrast to the thermophilic community (50 °C) where up to 98% of methane was formed from bicarbonate. In the mesophilic community (30 °C), acetate was the precursor of about 80% of the methane produced. When the hydrogen–carbon dioxide mixture (H2/CO2) was used as a substrate, it was directly converted to methane under thermophilic conditions (70 and 50 °C). Under mesophilic conditions (30 °C), both pathways, hydrogenotrophic and acetoclastic, were observed. At low temperatures (5 and 15 °C), H2/CO2 was converted into methane by a two-step process; first acetate was formed, followed by methane production from acetate. When slurries were incubated at high partial pressures of H2/CO2, the high concentrations of acetate produced of more than 20 mM inhibited acetoclastic methanogenesis at a temperature below 15 °C. However, slow adaptation of the psychrophilic microbial community to high acetate concentrations was observed

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution
    • 

    corecore