390 research outputs found

    Higher cost of finance exacerbates a climate investment trap in developing economies

    Get PDF
    Finance is vital for the green energy transition, but access to low cost finance is uneven as the cost of capital differs substantially between regions. This study shows how modelled decarbonisation pathways for developing economies are disproportionately impacted by different weighted average cost of capital (WACC) assumptions. For example, representing regionally-specific WACC values indicates 35% lower green electricity production in Africa for a cost-optimal 2 °C pathway than when regional considerations are ignored. Moreover, policy interventions lowering WACC values for low-carbon and high-carbon technologies by 2050 would allow Africa to reach net-zero emissions approximately 10 years earlier than when the cost of capital reduction is not considered. A climate investment trap arises for developing economies when climate-related investments remain chronically insufficient. Current finance frameworks present barriers to these finance flows and radical changes are needed so that capital is more equitably distributed

    NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features

    Full text link
    While the GPGPU paradigm is widely recognized as an effective approach to high performance computing, its adoption in low-latency, real-time systems is still in its early stages. Although GPUs typically show deterministic behaviour in terms of latency in executing computational kernels as soon as data is available in their internal memories, assessment of real-time features of a standard GPGPU system needs careful characterization of all subsystems along data stream path. The networking subsystem results in being the most critical one in terms of absolute value and fluctuations of its response latency. Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network Interface Card (NIC) design featuring a configurable and extensible set of network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler GPU memories. NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE (10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency KM3link - channels, but its modularity allows for a straightforward inclusion of other link technologies. To avoid host OS intervention on data stream and remove a possible source of jitter, the design includes a network/transport layer offload module with cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division Multiplexing and APElink protocols. After NaNet architecture description and its latency/bandwidth characterization for all supported links, two real world use cases will be presented: the GPU-based low level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino telescope

    Secondary Endoleak Management Following TEVAR and EVAR.

    Get PDF
    Endovascular abdominal and thoracic aortic aneurysm repair and are widely used to treat increasingly complex aneurysms. Secondary endoleaks, defined as those detected more than 30 days after the procedure and after previous negative imaging, remain a challenge for aortic specialists, conferring a need for long-term surveillance and reintervention. Endoleaks are classified on the basis of their anatomic site and aetiology. Type 1 and type 2 endoleaks (EL1 and EL2) are the most common endoleaks necessitating intervention. The management of these requires an understanding of their mechanics, and the risk of sac enlargement and rupture due to increased sac pressure. Endovascular techniques are the main treatment approach to manage secondary endoleaks. However, surgery should be considered where endovascular treatments fail to arrest aneurysm growth. This chapter reviews the aetiology, significance, management strategy and techniques for different endoleak types

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Mechanical forces induce an asthma gene signature in healthy airway epithelial cells

    Get PDF
    Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature

    Expansion cone for the 3-inch PMTs of the KM3NeT optical modules

    Full text link
    [EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.Adrián Martínez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198

    Risk Factors Associated with Adverse Fetal Outcomes in Pregnancies Affected by Coronavirus Disease 2019 (COVID-19): A Secondary Analysis of the WAPM study on COVID-19

    Get PDF
    To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Mean gestational age at diagnosis was 30.6\ub19.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09-1.12.7 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3-7.9; p=0.001) were independently associated with composite adverse fetal outcome. Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible

    Event reconstruction for KM3NeT/ORCA using convolutional neural networks

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Professional Training, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain.The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Shota Rustaveli National Science Foundation of Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR) Research Projects of National Relevance (PRIN)Ministry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO)National Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades PGC2018-096663-B-C41 A-C42 B-C43 B-C44Severo Ochoa Centre of ExcellenceJunta de Andalucia SOMM17/6104/UGRGeneralitat Valenciana: Grisolia GRISOLIA/2018/119 CIDEGENT/2018/034La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program 71367

    The KM3NeT potential for the next core-collapse supernova observation with neutrinos

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISO-LIA/2018/119) and GenT (ref. CIDEGENT/2018/034 and CIDE-GENT/2019/043) programs, La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 713673), Spain. This work has also received funding from the European Union'sHorizon 2020 research and innovation program under Grant agreement no 739560.The KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with similar to 6200 optical modules comprising a total of similar to 200,000 photomultiplier tubes, KM3NeT will achieve sensitivity to similar to 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is estimated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a 5 sigma discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud (similar to 60 kpc). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to determine the arrival time of the neutrino burst with a few milliseconds precision for sources up to 5-8 kpc away, and detecting the peculiar signature of the standing accretion shock instability if the core-collapse supernova explosion happens closer than 3-5 kpc, depending on the progenitor mass. KM3NeT's capability to measure the neutrino flux spectral parameters is also presented.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)Commission Europeenne, FranceInstitut Universitaire de France (IUF), FranceLabEx UnivEarthS, France ANR-10-LABX-0023 ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTGreek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program, Italy NAT-NET 2017W4HA7SMinistry of Higher Education Scientific Research and Professional Training, ICTP, Morocco AF-13Netherlands Organization for Scientific Research (NWO)Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento, Spain PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-B-C43 PGC2018-096663-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), SpainJunta de Andalucia European Commission SOMM17/6104/UGRGeneralitat Valenciana: Grisolia, Spain GRISO-LIA/2018/119 GenT program, Spain CIDEGENT/2018/034 CIDE-GENT/2019/043La Caixa Foundation LCF/BQ/IN17/11620019 EU: MSC program, Spain 713673European Commission 73956

    Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

    Get PDF
    KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings — detection units or strings — equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema® ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.French National Research Agency (ANR) ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)European Union (EU)Institut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Paris Ile-de-France Region, FranceShota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MUR), PRIN Italy NAT-NET 2017W4HA7SMinistry of Higher Education, Scientific Research and Professional Training, MoroccoNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Center, Poland National Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (MCIU/FEDER) PGC2018-096663-B-C41 PGC2018-096663-B-A-C42 PGC2018-096663-B-BC43 PGC2018-096663-B-B-C44Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucía SOMM17/6104/UGRGeneralitat Valenciana GRISOLIA/2018/119 CIDEGENT/2018/034La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program, Spain 71367
    • …
    corecore