176 research outputs found

    Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase

    Get PDF
    Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNA(Pyl). The genes for tRNA(Pyl) (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNA(Pyl) identity elements were determined by measuring the ability of 24 mutant tRNA(Pyl) species to be aminoacylated with the pyrrolysine analog N-ε-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1·C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNA(Pyl) predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNA(Pyl) structure contains the highly conserved T-loop contact U54·A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNA(Pyl) anticodon was shown not to be important for recognition by bacterial PylRS

    Transfer RNA Recognition by Class I Lysyl-tRNA Synthetase from the Lyme Disease Pathogen Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi and other spirochetes contain a class I lysyl‐tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNALys recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNALys in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNALys were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNAAsp scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined

    The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity

    Get PDF
    AbstractPyrrolysine (Pyl) is co-translationally inserted into a subset of proteins in the Methanosarcinaceae and in Desulfitobacterium hafniense programmed by an in-frame UAG stop codon. Suppression of this UAG codon is mediated by the Pyl amber suppressor tRNA, tRNAPyl, which is aminoacylated with Pyl by pyrrolysyl-tRNA synthetase (PylRS). We compared the behavior of several archaeal and bacterial PylRS enzymes towards tRNAPyl. Equilibrium binding analysis revealed that archaeal PylRS proteins bind tRNAPyl with higher affinity (KD=0.1–1.0μM) than D. hafniense PylRS (KD=5.3–6.9μM). In aminoacylation the archaeal PylRS enzymes did not distinguish between archaeal and bacterial tRNAPyl species, while the bacterial PylRS displays a clear preference for the homologous cognate tRNA. We also show that the amino-terminal extension present in archaeal PylRSs is dispensable for in vitro activity, but required for PylRS function in vivo

    Cysteinyl-tRNA formation and prolyl-tRNA synthetase

    Get PDF
    AbstractAminoacyl-tRNA (AA-tRNA) formation is a key step in protein biosynthesis. This reaction is catalyzed with remarkable accuracy by the AA-tRNA synthetases, a family of 20 evolutionarily conserved enzymes. The lack of cysteinyl-tRNA (Cys-tRNA) synthetase in some archaea gave rise to the discovery of the archaeal prolyl-tRNA (Pro-tRNA) synthetase, an enzyme capable of synthesizing Pro-tRNA and Cys-tRNA. Here we review our current knowledge of this fascinating process

    Development of the genetic code: insights from a fungal codon reassignment

    Get PDF
    The high conservation of the genetic code and its fundamental role in genome decoding suggest that its evolution is highly restricted or even frozen. However, various prokaryotic and eukaryotic genetic code alterations, several alternative tRNA-dependent amino acid biosynthesis pathways, regulation of tRNA decoding by diverse nucleoside modifications and recent in vivo incorporation of non-natural amino acids into prokaryotic and eukaryotic proteins, show that the code evolves and is surprisingly flexible. The cellular mechanisms and the proteome buffering capacity that support such evolutionary processes remain unclear. Here we explore the hypothesis that codon misreading and reassignment played fundamental roles in the development of the genetic code and we show how a fungal codon reassignment is enlightening its evolution.publishe

    The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world

    Get PDF
    Biotechnology has empirically established that it is easier to construct and evaluate variant genes and proteins than to account for the emergence and function of wild-type macromolecules. Systematizing this constructive approach, synthetic biology now promises to infer and assemble entirely novel genomes, cells and ecosystems. It is argued here that the theoretical and computational tools needed for this endeavor are missing altogether. However, such tools may not be required for diversifying organisms at the basic level of their chemical constitution by adding, substituting or removing elements and molecular components through directed evolution under selection. Most importantly, chemical diversification of life forms could be designed to block metabolic cross-feed and genetic cross-talk between synthetic and wild species and hence protect natural habitats and human health through novel types of containment

    Stereochemical Basis for Engineered Pyrrolysyl-tRNA Synthetase and the Efficient in Vivo Incorporation of Structurally Divergent Non-native Amino Acids

    Get PDF
    bS Supporting Information Incorporation of Uaas into proteins using a host’s endogenoustranslation machinery opens the door to addressing questions with chemical precision that is unattainable using naturally occurring amino acids. This expanded toolset allows one to pose and answer more in-depth molecular questions without the limitations imposed by the 20 natural amino acids used in traditional mutagenic analyses.1,2 Aminoacyl-tRNA synthetases (RSs) obtained by structure-based engineering and directed evolution efficiently recognize and activate Uaas through ATP-dependent adenylation and subsequently catalyze transfer to their cognate tRNA. To date, more than 70 Uaas are now amenable to translational insertion into proteins in bacteria, yeast, or mammalian cells using these artificially evolved tRNA/ RS pairs.3 By choosing particular matching sets of tRNA/RSs from diverse organisms, the pairs can function in vivo in a

    Candida albicans CUG mistranslation is a mechanism to create cell surface variation

    Get PDF
    In the human fungal pathogen Candida albicans, the CUG codon is translated 97% of the time as serine and 3% of the time as leucine, which potentially originates an array of proteins resulting from the translation of a single gene. Genes encoding cell surface proteins are enriched in CUG codons; thus, CUG mistranslation may influence the interactions of the organism with the host. To investigate this, we compared a C. albicans strain that misincorporates 28% of leucine at CUGs with a wild-type parental strain. The first strain displayed increased adherence to inert and host molecules. In addition, it was less susceptible to phagocytosis by murine macrophages, probably due to reduced exposure of cell surface β-glucans. To prove that these phenotypes occurred due to serine/leucine exchange, the C. albicans adhesin and invasin ALS3 was expressed in Saccharomyces cerevisiae in its two natural isoforms (Als3p-Leu and Als3p-Ser). The cells with heterologous expression of Als3p-Leu showed increased adherence to host substrates and flocculation. We propose that CUG mistranslation has been maintained during the evolution of C. albicans due to its potential to generate cell surface variability, which significantly alters fungus-host interactions.This study was supported by project POCI/SAU-IMI/61598/2004 financed by the Fundação para Ciência e Tecnologia (FCT). I.M. is supported by FCT Ciência 2008 and the European Social Fund. A.S.-D. is supported by an FCT Ph.D. grant (SFRH/BD/44896/2008). S.G.F. was supported in part by grants R01AI054928 and R01DE017088 from the National Institutes of Health, United States.publishe

    The Different Colors of mAbs in Solution

    No full text
    The color of a therapeutic monoclonal antibody solution is a critical quality attribute. Consistency of color is typically assessed at time of release and during stability studies against preset criteria for late stage clinical and commercial products. A therapeutic protein solution’s color may be determined by visual inspection or by more quantitative methods as per the different geographical area compendia. The nature and intensity of the color of a therapeutic protein solution is typically determined relative to calibrated standards. This review covers the analytical methodologies used for determining the color of a protein solution and presents an overview of protein variants and impurities known to contribute to colored recombinant therapeutic protein solutions
    corecore