51 research outputs found

    ScenaLand: a simple methodology for developing land use and management scenarios

    Get PDF
    Scenarios serve science by testing the sensitivity of a system and/or society to adapt to the future. In this study, we present a new land use scenario methodology called ScenaLand. This methodology aims to develop plausible and contrasting land use and management (LUM) scenarios, useful to explore how LUM (e.g. soil and water conservation techniques) may afect ecosystem services under global change in a wide range of environments. ScenaLand is a method for constructing narrative and spatially explicit land use scenarios that are useful for end-users and impact modellers. This method is innovative because it merges literature and expert knowledge, and its low data requirement makes it easy to be implemented in the context of inter-site comparison, including global change projections. ScenaLand was developed and tested on six diferent Mediterranean agroecological and socioeconomic contexts during the MASCC research project (Mediterranean agricultural soil conservation under global change). The method frst highlights the socioeconomic trends of each study site including emerging trends such as new government laws, LUM techniques through a qualitative survey addressed to local experts. Then, the method includes a ranking of driving factors, a matrix about land use evolution, and soil and water conservation techniques. ScenaLand also includes a framework to develop narratives along with two priority axes (contextualized to environmental protection vs. land productivity in this study). In the context of this research project, four contrasting scenarios are proposed: S1 (business-as-usual), S2 (market-oriented), S3 (environmental protection), and S4 (sustainable). Land use maps are then built with the creation of LUM allocation rules based on agroecological zoning. ScenaLand resulted in a robust and easy method to apply with the creation of 24 contrasted scenarios. These scenarios come not only with narratives but also with spatially explicit maps that are potentially used by impact modellers and other endusers. The last part of our study discusses the way the method can be implemented including a comparison between sites and the possibilities to implement ScenaLand in other contexts.info:eu-repo/semantics/publishedVersio

    River ecosystem conceptual models and non‐perennial rivers: A critical review

    Get PDF
    Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.info:eu-repo/semantics/publishedVersio

    Rethinking ecosystem service indicators for their application to intermittent rivers

    Get PDF
    © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).In these times of strong pressure on aquatic ecosystems and water resources due to climate change and water abstraction, intermittent rivers and ephemeral streams (IRES) (rivers that periodically cease to flow and/or dry) have become valuable assets. Indeed, not only do they supply water but they also offer services for humanity. Despite a growing recognition towards IRES, information for assessing their ecosystem services (ES) remains scarce. In a first step, an international interdisciplinary group of researchers developed a methodological framework to acknowledge ES provided by IRES using 109 indicators. A subset of selected ES indicators was then applied to two case studies: the Rio Seco in the Algarve (Portugal) and the Giofyros River in Crete (Greece). This paper discusses the applicability of these indicators, including the temporal and spatial variability of IRES flow regimes. Aspects of the framework, such as the methods and time required for data collection, the nature (demand or supply) and functionality of each indicator are discussed. The new framework accounts for flow intermittence in ES analyses and can help scientists and water managers to i) increase the ease and justification for IRES use in management approaches and ii) improve their conservation and restoration with a comprehensive set of appropriate indicators for IRES. In addition, the comprehensive nature of the proposed indicators ensures that they can be understood by a broad audience and easily applicable. Since they were designed through a public participation process, the setting has been prepared for holistic stakeholder analysis and education around IRES functions and associated ES. From a management point of view, it would be particularly relevant to perform an economic evaluation with this new framework to understand the value of each ES category and their trade-offs. For the scientific community, however, it is important to consider public preferences to design socially accepted policies. The proposed indicators can successfully bridge these elements, hereby establishing a solid basis for the assessment of ES provided by IRES.The authors thank the SMIRES COST ACTION CA15113 from the European Cooperation in Science and Technology for funding part of this research and especially the research grant that AV Pastor received in 2017: STSM reference number: CA15113-41532 entitled « Assessment of ecosystem services of an intermittent river in the South of Portugal ». The authors also thank Cristina Viegas, municipality of Faro (PT), Cristina Veiga-Pires (University of Algarve), Marques Afonso (APA-ARH, Faro, Portugal), Miguel Rodrigues (CCV Alg, PT), Helena Correie (Centro de formacao profesionais de Faro, PT), Ines Monteiro (Field Portuguese translator to English) for the Rio Seco CS and Marinos Kritsotakis, Aggeliki Martinou and Ioanna Mari, Manolis Dretakis, Foukarakis Michalis - officer, Antonaki Anna - officer, Filipakis Dimitris, Dimosthenis Isaakiidis and Giannakakis Thanos for the Giofyros CS. Additional funding was obtained from the Portuguese Fundação para a CiĂȘncia e a Tecnologia, through funding attributed to the CE3C research center (UIDB/00329/2020). DB was supported by CSIC Interdisciplinary Thematic Platform (PTI) SĂ­ntesis de Datos de Ecosistemas y Biodiversidad (PTI-ECOBIODIV).Peer reviewe

    Current Wildland Fire Patterns and Challenges in Europe : A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009-2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action "Fire and the Earth System: Science & Society" funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.Peer reviewe

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Préserver l'eau pour l'alimentation et les écosystÚmes d'eau douce

    No full text
    Freshwater ecosystems are among the most threatened ecosystems on Earth. At the same time, water demand for food is projected to increase with projected increase in population and diet shift putting part of the population under pressure in terms of food security. These projections are likely to be exacerbated by climate change. Over the past decades, irrigated areas have nearly tripled to meet actual human food requirements. Today, 40% of food production comes from irrigated production and about 30% from irrigated areas. This increasing share of irrigated production has come at the expense of freshwater ecosystems and river health. About half of the rivers have been fragmented and altered via the constructions of dams and reservoirs and via diversion of river flow to irrigated fields. Furthermore, water demand for industry, household and hydropower is predicted to increase and competition between water sectors will intensify. Under actual water competition, water availability for freshwater ecosystems has often been neglected.Over the past decade, awareness was given to define planetary boundaries for natural resources especially freshwater ones. While irrigation withdrawals and industries and household withdrawals already reach respectively about 2600 km3 yr-1 and 1000 km3 yr-1, planetary boundaries for freshwater have been defined to 4000 km3 yr-1. With the expected rise in water demand for food and industries, freshwater boundaries are likely to be exceeded in the coming decades and it is urgent to define global water availability and demand with accurate time and spatial resolutions. More specifically, it is necessary to develop a method that enables the calculation of water demand for freshwater ecosystems known as “Environment Flow Requirements” (EFRs). EFRs were often neglected in global assessments and/or defined with annual proxies.The overall objectives of this thesis were to redefine global water demand for freshwater ecosystems (EFRs) and set these last as a priority in global integrated assessments. For that, it was necessary to design a robust methodology that can be easily implemented in Global Hydrological Models (GHMs) and in global integrated assessments. In chapter 2, existing global and local Environmental Flow (EF) methods were reviewed. Three methods were selected among existing global methods, including the Smakhtin method, which is based on a combination of annual quantiles and proxies of annual flow, the Tennant method, which is based on annual proxies of flow, and the Tessman method, which is based on monthly proxies of flow. Two other methods were designed for this study: the Variable Monthly Flow (VMF) method, which is based on the allocation of the percentage of monthly flow to the environment and the Q90_Q50 method, which is based on the allocation of flow quantiles. These methods were compared with 11 local case studies from different ecoregions, for which EFRs have been defined locally with ecological and hydrological data collection. The VMF method showed the best performance against local case studies and demonstrated easiness of use and validation with different flow regime types. Among the five global EF methods, EFRs represent 20 to 50% of mean annual flow to maintain EFRs in “fair” ecological conditions.In chapter 3, the concept of “Environmental Flow (EF) deficit” was designed. It represents the lacking flow to meet EFRs. EF deficit was defined on a monthly basis at 0.5 deg. The originality of this study is that the origin of the deficit was characterized by the natural deficit and the anthropogenic deficit. Natural deficit is defined when EFRs are not met due to natural climate variability and anthropogenic deficit is defined when EFRs are not met due to water extractions for irrigation or other users. The frequency, timing and magnitude of each deficit were also calculated at global scale. The EF deficit was also studied for 23 river basins, which are located in different ecoregions, and it was shown that flow regime type, origin of deficit, magnitude of deficit and level of flow alteration were correlated. Perennial rivers such as the Congo River showed only natural deficit while very altered river such as the Godavari river showed high respective natural and anthropogenic deficit. In chapter 4, we set EFRs as a priority user in the global vegetation model LPJmL. It was shown that to sustain EFRs in “fair” ecological conditions, irrigation water use should be reduced by 30%, which would lead to 30% less food coming from irrigated area and a total of 5% loss in food production. Calorie loss per capita was really high in developing countries where population density is high such as in South-East Asia. This loss in food production can however be compensated by an increase of 50% in irrigation use efficiency.In chapter 5, we used an economic optimization model (GLOBIOM) to study future global change including different constrains of EFRs. It was shown that, under future climate change (RCP 8.5) and socio-economic development (SSP2), international trade should be increased by 15% to compensate for EFRs implementations compared to a business-as-usual scenario. The positive outcome is that it was demonstrated that food and water security for humans and ecosystems can be sustained with three levees: use of trade (+15%), conversion of irrigated land to rainfed land (60Mha) in South Asia and expansion of rainfed land into natural area in Latin America.In the chapter 6, we reviewed and analyzed each chapter as an ensemble. The new development of the VMF method is acknowledged thanks to its application in all chapters of this thesis and in many other global assessments. Among them, two studies redefined the freshwater planetary boundaries at 2,800 km3 yr-1 which is lower than previous estimates defined by Rockstrom et al. (2009). This thesis allowed the inclusion of EFRs in global integrated assessments with refined temporal and spatial scales and water demand for ecosystems are now recognized and acknowledged. The limitations of the VMF method are also discussed such as its weakness to be compatible with inter-annual studies considering extreme events such as floods and droughts. Further data collection on eco-hydrological relationships should be organized and harmonized at global scale to further improve EFRs at global scale. Characterization of EF deficit with differentiation of the anthropogenic and natural deficit can be used as a tool to prioritise actions in terms of river restoration/protection. In face of meeting future SDGs, we highlighted the complexity in meeting food and water security for humans and ecosystems. Competition between different water sectors already exist and require local, regional and international consensus to satisfy all water users while safeguarding water availability for freshwater ecosystems. For that, future improvement in agriculture and water management is fundamental to provide future sustainable water access to humanity.Les Ă©cosystĂšmes d’eau douce contiennent les espĂšces les plus menacĂ©es de la planĂšte. ParallĂšlement, les demandes en eau pour l’alimentation vont augmenter linĂ©airement avec la croissance de la population et les changements de rĂ©gimes alimentaires mettent en pĂ©ril la sĂ©curitĂ© alimentaire mondiale. Durant les derniĂšres dĂ©cennies, les surfaces en terres irriguĂ©es ont presque triplĂ© pour satisfaire les besoins croissants de l’alimentation humaine. Aujourd’hui, 40% de l’alimentation humaine provient de la production agricole irriguĂ©e, laquelle recouvre 30% des surfaces agricoles. Cette croissance continue de la production des terres irriguĂ©es s’est dĂ©veloppĂ©e au dĂ©triment des Ă©cosystĂšmes d’eau douce et au dĂ©triment de la qualitĂ© des riviĂšres. Presque la moitiĂ© des riviĂšres du monde ont Ă©tĂ© fragmentĂ©es et dĂ©truites via la construction de barrages et de rĂ©servoirs et via la dĂ©viation du dĂ©bit des riviĂšres vers les champs irriguĂ©s. De plus, il faut envisager que les demandes croissance en eau pour l’industrie, les foyers et les centrales hydro-Ă©lectriques vont augmenter. La compĂ©tition entre les secteurs d’activitĂ©s utilisant l’eau va donc s’intensifier et face Ă  cette pression croissante, les disponibilitĂ©s en eau pour les Ă©cosystĂšmes d’eau douce sont souvent nĂ©gligĂ©es.Durant la derniĂšre dĂ©cennie, la dĂ©finition « des limites planĂ©taires » concernant l’utilisation des ressources naturelles est devenue critique, notamment pour les ressources en eau. Alors que l’utilisation de l’eau du secteur agricole et industriel atteint respectivement 2600 km3 par an et 1000 km3 par an, les limites planĂ©taires pour l’eau douce ont Ă©tĂ© dĂ©finies Ă  4000 km3 par an. Avec une projection croissante de demande en eau, le seuil des limites planĂ©taires en eau douce est menace d’ĂȘtre dĂ©passĂ©. Il est donc urgent de redĂ©finir les disponibilitĂ©s et les demandes mondiales en eau avec des Ă©chelles spatiales et temporelles fines. Il est aussi essential de dĂ©velopper une mĂ©thode permettant le calcul des demandes en eau pour les Ă©cosystĂšmes d’eau douce nomme : le « dĂ©bit rĂ©servĂ© ». Ce dernier a souvent Ă©tĂ© nĂ©gligĂ© dans les Ă©valuations intĂ©grĂ©es et/ou souvent dĂ©fini seulement avec des pourcentages annuels du dĂ©bit.Les objectifs de cette thĂšse sont de redĂ©finir les demandes mondiales en eau pour les Ă©cosystĂšmes d’eau douce et de leur donner une prioritĂ© dans les Ă©valuations intĂ©grĂ©es mondiales. Pour cela, il Ă©tait indispensable de dĂ©velopper une mĂ©thode Ă  la fois solide et facilement applicable dans les modĂšles hydrologiques Ă  Ă©chelle mondiale et dans les Ă©valuations intĂ©grĂ©es Ă  Ă©chelle mondiale Dans le chapitre 2, une Ă©tude bibliographique des mĂ©thodes du dĂ©bit rĂ©serve est effectuĂ©e. Trois mĂ©thodes seront sĂ©lectionnĂ©es parmi les mĂ©thodes existantes : la mĂ©thode Smakthin basĂ©e sur les quantiles annuels et pourcentage du dĂ©bit annuel, la mĂ©thode Tennant basĂ©e sur les pourcentages du dĂ©bit annuel et la mĂ©thode Tessmann basĂ©e sur le pourcentage mensuel du dĂ©bit. Deux autres mĂ©thodes sont conceptualisĂ©es : la «Variable Monthly Flow » mĂ©thode ou la mĂ©thode au « dĂ©bit mensuel variable » basĂ©e sur le pourcentage du dĂ©bit mensuel et la mĂ©thode du Q90_Q50 basĂ©e sur des quantiles du dĂ©bit annuel. Ces mĂ©thodes ont Ă©tĂ© comparĂ©es Ă  onze cas d’études locaux situĂ©s dans diffĂ©rentes Ă©corĂ©gions du monde dont les dĂ©bits rĂ©serves ont Ă©tĂ© dĂ©finis avec la collecte de donnĂ©es Ă©cologiques et hydrologiques. La mĂ©thode VMF a rĂ©vĂ©lĂ© la meilleure performance par rapport aux cas d’études locaux et elle a dĂ©montrĂ© sa facilitĂ© d'utilisation et de validation avec diffĂ©rents types de rĂ©gime d'Ă©coulement. Parmi les cinq mĂ©thodes globales, le dĂ©bit rĂ©servĂ© reprĂ©sente 20 Ă  50% de l'Ă©coulement annuel moyen pour maintenir les Ă©cosystĂšmes d’eau douce dans des conditions Ă©cologiques "acceptables".Dans le chapitre 3, le concept de «dĂ©ficit du dĂ©bit environnemental » ou « Environnemental Flow (EF) dĂ©ficit » a Ă©tĂ© conçu. Il reprĂ©sente le manque de dĂ©bit pour rĂ©pondre au dĂ©bit rĂ©servĂ©. Le dĂ©ficit de dĂ©bit rĂ©serve a Ă©tĂ© calculĂ© mensuellement avec une dimension spatiale de 0,5 degrĂ©. L'originalitĂ© de cette Ă©tude est que l’origine du dĂ©ficit a Ă©tĂ© caractĂ©risĂ©e par le dĂ©ficit anthropique et naturel. Le dĂ©ficit naturel est dĂ©fini lorsque le dĂ©bit rĂ©servĂ© n’est pas satisfait en raison de la variabilitĂ© naturelle du climat et le dĂ©ficit anthropique est dĂ©fini lorsque le dĂ©bit anthropique n’est pas suffisant pour l'irrigation. La frĂ©quence, la durĂ©e, le timing et la magnitude de chaque dĂ©ficit ont Ă©galement Ă©tĂ© calculĂ©s Ă  Ă©chelle mondiale. Le dĂ©ficit du dĂ©bit rĂ©servĂ© a Ă©galement Ă©tĂ© Ă©tudiĂ© pour 23 bassins situĂ©s dans diffĂ©rentes Ă©corĂ©gions et il a Ă©tĂ© dĂ©montrĂ© que le type de rĂ©gime d'Ă©coulement, l'origine du dĂ©ficit, l'ampleur du dĂ©ficit et le niveau d'altĂ©ration de l'Ă©coulement Ă©taient corrĂ©lĂ©s. Les riviĂšres stables comme le fleuve Congo ont montrĂ© seulement un dĂ©ficit naturel alors que les riviĂšres trĂšs dĂ©gradĂ©es comme la riviĂšre Godavari ont montrĂ© un haut dĂ©ficit naturel et anthropique.Dans le chapitre 4, nous avons dĂ©fini le dĂ©bit rĂ©serve comme un utilisateur prioritaire dans le modĂšle de vĂ©gĂ©tation globale LPJmL. Il a Ă©tĂ© dĂ©montrĂ© afin de maintenir le dĂ©bit rĂ©servĂ© dans des conditions Ă©cologiques "acceptables” que l'utilisation de l'eau pour l'irrigation devrait ĂȘtre rĂ©duite de 30%, ce qui entraĂźnerait une baisse de 30% de moins de nourriture provenant des terres irriguĂ©es et une perte totale de production alimentaire de 5%. Il en rĂ©sulterait une perte de calories trĂšs Ă©levĂ©e par habitant dans les pays en dĂ©veloppement. Cette perte de production alimentaire peut toutefois ĂȘtre compensĂ©e par une augmentation de 50% de l'efficacitĂ© de l'utilisation de l'irrigation.Dans le chapitre 5, nous avons utilisĂ© un modĂšle d'optimisation Ă©conomique (GLOBIOM) afin d’étudier les changements futurs Ă  Ă©chelle mondiale, y compris les restrictions en eau par le dĂ©bit rĂ©servĂ©. Il est dĂ©montrĂ© que, dans le cadre du futur changement climatique (RCP 8.5) et du dĂ©veloppement socioĂ©conomique (scenario SSP2), l’utilisation du commerce devrait ĂȘtre augmentĂ©e de 15% pour compenser les mises en Ɠuvre du dĂ©bit rĂ©servĂ© par rapport Ă  un scĂ©nario normalisĂ©. Le rĂ©sultat positif et probant est le suivant : la sĂ©curitĂ© alimentaire et hydrique pour les humains et les Ă©cosystĂšmes peut ĂȘtre maintenue sous trois conditions: l'utilisation du commerce (+ 15%), la conversion des terres irriguĂ©es en terres pluviales (60Mha) en Asie du Sud et l'expansion des terres pluviales notamment en AmĂ©rique latine.Dans le chapitre 6, nous avons examinĂ© et analysĂ© chaque chapitre sous forme d'ensemble. Le nouveau dĂ©veloppement de la mĂ©thode VMF est reconnu grĂące Ă  son application dans tous les chapitres de cette thĂšse et ainsi que dans de nombreuses autres Ă©valuations scientifiques. Parmi celles-ci, deux Ă©tudes ont redĂ©fini les limites planĂ©taires d'eau douce Ă  2800 km3 par an, ce qui est infĂ©rieur aux estimations prĂ©cĂ©dentes dĂ©finies par Rockstrom et al. (2009). Cette thĂšse a permis l'inclusion du dĂ©bit rĂ©servĂ© dans les Ă©valuations mondiales intĂ©grĂ©es avec des Ă©chelles spatiales et temporelles fine et la demande en eau pour les Ă©cosystĂšmes est dĂ©sormais reconnue. Les limites de la mĂ©thode VMF sont Ă©galement discutĂ©es, comme notamment sa faiblesse pour ĂȘtre compatible avec les Ă©tudes interannuelles tels les Ă©vĂ©nements extrĂȘmes incluant inondations et sĂ©cheresses. Il faudrait organiser et harmoniser la collecte de donnĂ©es sur les relations Ă©co-hydrologiques Ă  l'Ă©chelle mondiale afin d’amĂ©liorer les mĂ©thodes de dĂ©bit rĂ©servĂ©. La caractĂ©risation du dĂ©ficit avec la diffĂ©renciation du dĂ©ficit anthropique et naturel peut servir d'outil pour dĂ©finir le niveau de prioritĂ© d’action en termes de restauration/protection des riviĂšres. Dans le cadre de l’agenda des futurs SDG, nous avons soulignĂ© la complexitĂ© de satisfaire la sĂ©curitĂ© alimentaire et hydrique pour les humains et les Ă©cosystĂšmes. La concurrence entre les diffĂ©rents secteurs de l'eau existe dĂ©jĂ  et nĂ©cessite un consensus local, rĂ©gional et international afin de satisfaire tous les utilisateurs d'eau tout en prĂ©servant la disponibilitĂ© de l'eau pour les Ă©cosystĂšmes d'eau douce. Pour cela, l'amĂ©lioration future de l'agriculture et de la gestion de l'eau est fondamentale, elle assurera un accĂšs durable et pĂ©renne Ă  l'humanitĂ©.Les Ă©cosystĂšmes d’eau douce contiennent les espĂšces les plus menacĂ©es de la planĂšte. ParallĂšlement, les demandes en eau pour l’alimentation vont augmenter linĂ©airement avec la croissance de la population et les changements de rĂ©gimes alimentaires mettent en pĂ©ril la sĂ©curitĂ© alimentaire mondiale. Durant les derniĂšres dĂ©cennies, les surfaces en terres irriguĂ©es ont presque triplĂ© pour satisfaire les besoins croissants de l’alimentation humaine. Aujourd’hui, 40% de l’alimentation humaine provient de la production agricole irriguĂ©e, laquelle recouvre 30% des surfaces agricoles. Cette croissance continue de la production des terres irriguĂ©es s’est dĂ©veloppĂ©e au dĂ©triment des Ă©cosystĂšmes d’eau douce et au dĂ©triment de la qualitĂ© des riviĂšres. Presque la moitiĂ© des riviĂšres du monde ont Ă©tĂ© fragmentĂ©es et dĂ©truites via la construction de barrages et de rĂ©servoirs et via la dĂ©viation du dĂ©bit des riviĂšres vers les champs irriguĂ©s. De plus, il faut envisager que les demandes croissance en eau pour l’industrie, les foyers et les centrales hydro-Ă©lectriques vont augmenter. La compĂ©tition entre les secteurs d’activitĂ©s utilisant l’eau va donc s’intensifier et face Ă  cette pression croissante, les disponibilitĂ©s en eau pour les Ă©cosystĂšmes d’eau douce sont souvent nĂ©gligĂ©es.Durant la derniĂšre dĂ©cennie, la dĂ©finition « des limites planĂ©taires » concernant l’utilisation des ressources naturelles est devenue critique, notamment pour les ressources en eau. Alors que l’utilisation de l’eau du secteur agricole et industriel atteint respectivement 2600 km3 par an et 1000 km3 par an, les limites planĂ©taires pour l’eau douce ont Ă©tĂ© dĂ©finies Ă  4000 km3 par an. Avec une projection croissante de demande en eau, le seuil des limites planĂ©taires en eau douce est menace d’ĂȘtre dĂ©passĂ©. Il est donc urgent de redĂ©finir les disponibilitĂ©s et les demandes mondiales en eau avec des Ă©chelles spatiales et temporelles fines. Il est aussi essential de dĂ©velopper une mĂ©thode permettant le calcul des demandes en eau pour les Ă©cosystĂšmes d’eau douce nomme : le « dĂ©bit rĂ©servĂ© ». Ce dernier a souvent Ă©tĂ© nĂ©gligĂ© dans les Ă©valuations intĂ©grĂ©es et/ou souvent dĂ©fini seulement avec des pourcentages annuels du dĂ©bit.Les objectifs de cette thĂšse sont de redĂ©finir les demandes mondiales en eau pour les Ă©cosystĂšmes d’eau douce et de leur donner une prioritĂ© dans les Ă©valuations intĂ©grĂ©es mondiales. Pour cela, il Ă©tait indispensable de dĂ©velopper une mĂ©thode Ă  la fois solide et facilement applicable dans les modĂšles hydrologiques Ă  Ă©chelle mondiale et dans les Ă©valuations intĂ©grĂ©es Ă  Ă©chelle mondiale Dans le chapitre 2, une Ă©tude bibliographique des mĂ©thodes du dĂ©bit rĂ©serve est effectuĂ©e. Trois mĂ©thodes seront sĂ©lectionnĂ©es parmi les mĂ©thodes existantes : la mĂ©thode Smakthin basĂ©e sur les quantiles annuels et pourcentage du dĂ©bit annuel, la mĂ©thode Tennant basĂ©e sur les pourcentages du dĂ©bit annuel et la mĂ©thode Tessmann basĂ©e sur le pourcentage mensuel du dĂ©bit. Deux autres mĂ©thodes sont conceptualisĂ©es : la «Variable Monthly Flow » mĂ©thode ou la mĂ©thode au « dĂ©bit mensuel variable » basĂ©e sur le pourcentage du dĂ©bit mensuel et la mĂ©thode du Q90_Q50 basĂ©e sur des quantiles du dĂ©bit annuel. Ces mĂ©thodes ont Ă©tĂ© comparĂ©es Ă  onze cas d’études locaux situĂ©s dans diffĂ©rentes Ă©corĂ©gions du monde dont les dĂ©bits rĂ©serves ont Ă©tĂ© dĂ©finis avec la collecte de donnĂ©es Ă©cologiques et hydrologiques. La mĂ©thode VMF a rĂ©vĂ©lĂ© la meilleure performance par rapport aux cas d’études locaux et elle a dĂ©montrĂ© sa facilitĂ© d'utilisation et de validation avec diffĂ©rents types de rĂ©gime d'Ă©coulement. Parmi les cinq mĂ©thodes globales, le dĂ©bit rĂ©servĂ© reprĂ©sente 20 Ă  50% de l'Ă©coulement annuel moyen pour maintenir les Ă©cosystĂšmes d’eau douce dans des conditions Ă©cologiques "acceptables".Dans le chapitre 3, le concept de «dĂ©ficit du dĂ©bit environnemental » ou « Environnemental Flow (EF) dĂ©ficit » a Ă©tĂ© conçu. Il reprĂ©sente le manque de dĂ©bit pour rĂ©pondre au dĂ©bit rĂ©servĂ©. Le dĂ©ficit de dĂ©bit rĂ©serve a Ă©tĂ© calculĂ© mensuellement avec une dimension spatiale de 0,5 degrĂ©. L'originalitĂ© de cette Ă©tude est que l’origine du dĂ©ficit a Ă©tĂ© caractĂ©risĂ©e par le dĂ©ficit anthropique et naturel. Le dĂ©ficit naturel est dĂ©fini lorsque le dĂ©bit rĂ©servĂ© n’est pas satisfait en raison de la variabilitĂ© naturelle du climat et le dĂ©ficit anthropique est dĂ©fini lorsque le dĂ©bit anthropique n’est pas suffisant pour l'irrigation. La frĂ©quence, la durĂ©e, le timing et la magnitude de chaque dĂ©ficit ont Ă©galement Ă©tĂ© calculĂ©s Ă  Ă©chelle mondiale. Le dĂ©ficit du dĂ©bit rĂ©servĂ© a Ă©galement Ă©tĂ© Ă©tudiĂ© pour 23 bassins situĂ©s dans diffĂ©rentes Ă©corĂ©gions et il a Ă©tĂ© dĂ©montrĂ© que le type de rĂ©gime d'Ă©coulement, l'origine du dĂ©ficit, l'ampleur du dĂ©ficit et le niveau d'altĂ©ration de l'Ă©coulement Ă©taient corrĂ©lĂ©s. Les riviĂšres stables comme le fleuve Congo ont montrĂ© seulement un dĂ©ficit naturel alors que les riviĂšres trĂšs dĂ©gradĂ©es comme la riviĂšre Godavari ont montrĂ© un haut dĂ©ficit naturel et anthropique.Dans le chapitre 4, nous avons dĂ©fini le dĂ©bit rĂ©serve comme un utilisateur prioritaire dans le modĂšle de vĂ©gĂ©tation globale LPJmL. Il a Ă©tĂ© dĂ©montrĂ© afin de maintenir le dĂ©bit rĂ©servĂ© dans des conditions Ă©cologiques "acceptables” que l'utilisation de l'eau pour l'irrigation devrait ĂȘtre rĂ©duite de 30%, ce qui entraĂźnerait une baisse de 30% de moins de nourriture provenant des terres irriguĂ©es et une perte totale de production alimentaire de 5%. Il en rĂ©sulterait une perte de calories trĂšs Ă©levĂ©e par habitant dans les pays en dĂ©veloppement. Cette perte de production alimentaire peut toutefois ĂȘtre compensĂ©e par une augmentation de 50% de l'efficacitĂ© de l'utilisation de l'irrigation.Dans le chapitre 5, nous avons utilisĂ© un modĂšle d'optimisation Ă©conomique (GLOBIOM) afin d’étudier les changements futurs Ă  Ă©chelle mondiale, y compris les restrictions en eau par le dĂ©bit rĂ©servĂ©. Il est dĂ©montrĂ© que, dans le cadre du futur changement climatique (RCP 8.5) et du dĂ©veloppement socioĂ©conomique (scenario SSP2), l’utilisation du commerce devrait ĂȘtre augmentĂ©e de 15% pour compenser les mises en Ɠuvre du dĂ©bit rĂ©servĂ© par rapport Ă  un scĂ©nario normalisĂ©. Le rĂ©sultat positif et probant est le suivant : la sĂ©curitĂ© alimentaire et hydrique pour les humains et les Ă©cosystĂšmes peut ĂȘtre maintenue sous trois conditions: l'utilisation du commerce (+ 15%), la conversion des terres irriguĂ©es en terres pluviales (60Mha) en Asie du Sud et l'expansion des terres pluviales notamment en AmĂ©rique latine.Dans le chapitre 6, n

    Projecting Future Impacts of Global Change Including Fires on Soil Erosion to Anticipate Better Land Management in the Forests of NW Portugal

    No full text
    Wildfire is known to create the pre-conditions leading to accelerated soil erosion. Unfortunately, its occurrence is expected to increase with climate change. The objective of this study was to assess the impacts of fire on runoff and soil erosion in a context of global change, and to evaluate the effectiveness of mulching as a post-fire erosion mitigation measure. For this, the long-term soil erosion model LandSoil was calibrated for a Mediterranean catchment in north-central Portugal that burnt in 2011. LandSoil was then applied for a 20-year period to quantify the separate and combined hydrological and erosion impacts of fire frequency and of post-fire mulching using four plausible site-specific land use and management scenarios (S1. business-as-usual, S2. market-oriented, S3. environmental protection and S4. sustainable trade-off) and an intermediate climate change scenario Representative Concentration Pathway (RCP) 4.5 by 2050. The obtained results showed that: (i) fire had a reduced impact on runoff generation in the studied catchment (<5%) but a marked impact on sediment yield (SY) by about 30%; (ii) eucalypt intensification combined with climate change and fires can increase SY by threefold and (iii) post-fire mulching, combined with riparian vegetation maintenance/restoration and reduced tillage at the landscape level, was highly effective to mitigate soil erosion under global change and associated, increased fire frequency (up to 50% reduction). This study shows how field monitoring data can be combined with numerical erosion modeling to segregate the prominent processes occurring in post forest fire conditions and find the best management pathways to meet international goals on achieving land degradation neutrality (LDN)

    Reconciling irrigated food production with environmental flows for sustainable development goals implementation

    No full text
    Safeguarding river ecosystems is a precondition for attaining the UN Sustainable Development Goals (SDGs) related to water and the environment, while rigid implementation of such policies may hamper achievement of food security. River ecosystems provide life-supporting functions that depend on maintaining environmental flow requirements (EFRs). Here we establish gridded process-based estimates of EFRs and their violation through human water withdrawals. Results indicate that 41% of current global irrigation water use (997 km(3) per year) occurs at the expense of EFRs. If these volumes were to be reallocated to the ecosystems, half of globally irrigated cropland would face production losses of >= 10%, with losses of similar to 20-30% of total country production especially in Central and South Asia. However, we explicitly show that improvement of irrigation practices can widely compensate for such losses on a sustainable basis. Integration with rainwater management can even achieve a 10% global net gain. Such management interventions are highlighted to act as a pivotal target in supporting the implementation of the ambitious and seemingly conflicting SDG agenda
    • 

    corecore