44 research outputs found

    Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    Get PDF
    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF
    Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience

    Title Page Dissociation of Hyperglycemia from Altered Vascular Contraction and Relaxation Mechanisms in Caveolin-1 Null Mice Running Title Page Running Title: Glycemic and Vascular Dysfunction in Cav-1 Deficiency

    No full text
    cav-1 -/-<WT; endothelium removal, the NOS blocker L-NAME or soluble guanylate cyclase (sGC) inhibitor ODQ enhanced Phe contraction, and metformin blunted this effect. Acetylcholine (ACh)-induced relaxation was in cav-1 -/->WT, abolished by endotheliumremoval, L-NAME or ODQ, and reduced with metformin. NO donor sodium nitroprusside was more potent in inducing relaxation in cav-1 -/-than WT, and metformin reversed this effect. Aortic eNOS, AMPK and sGC were in cav-1 -/->WT, and metformin decreased total and phosphorylated eNOS and AMPK in cav-1 -/-. Thus metformin inhibits both vascular contraction and NO-cGMP-dependent relaxation, but does not affect BP or blood glucose in cav-1 -/-mice, suggesting dissociation of hyperglycemia from altered vascular function in cav-1 deficiency states. JPE

    Identification of a Novel Cell Death Receptor Mediating IGFBP-3-induced Anti-tumor Effects in Breast and Prostate Cancer*

    Get PDF
    Insulin-like growth factor-binding protein-3 (IGFBP-3), a major regulator of endocrine actions of IGFs, is a p53-regulated potent apoptotic factor and is significantly suppressed in a variety of cancers. Recent epidemiologic studies suggest that IGFBP-3 contributes to cancer risk protection in a variety of cancers, and a polymorphic variation of IGFBP-3 influences cancer risk, although other studies vary in their conclusions. Some antiproliferative actions of IGFBP-3 have been reported to be independent of IGFs, but the precise biochemical/molecular mechanisms of IGF-independent, antiproliferative actions of IGFBP-3 are largely unknown. Here we report a new cell death receptor, IGFBP-3R, that is a single-span membrane protein and binds specifically to IGFBP-3 but not other IGFBP species. Expression analysis of IGFBP-3 and IGFBP-3R indicates that the IGFBP-3/IGFBP-3R axis is impaired in breast and prostate cancer. We also provide evidence for anti-tumor effect of IGFBP-3R in vivo using prostate and breast cancer xenografts in athymic nude mice. Further in vitro studies demonstrate that IGFBP-3R mediates IGFBP-3-induced caspase-8-dependent apoptosis in various cancer cells. Knockdown of IGFBP-3R attenuated IGFBP-3-induced caspase activities and apoptosis, whereas overexpression of IGFBP-3R enhanced IGFBP-3 biological effects. IGFBP-3R physically interacts and activates caspase-8, and knockdown of caspase-8 expression or activity inhibited IGFBP-3/IGFBP-3R-induced apoptosis. Here, we propose that IGFBP-3R represents a novel cell death receptor and is essential for the IGFBP-3-induced apoptosis and tumor suppression. Thus, the IGFBP-3/IGFBP-3R axis may provide therapeutic and prognostic value for the treatment of cancer
    corecore